References

Selected references

In any publication arising from the use of Koopmans functionals and/or the koopmans code, please cite

  • E. B. Linscott, N. Colonna, R. De Gennaro, N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. Koopmans: An Open-Source Package for Accurately and Efficiently Predicting Spectral Properties with Koopmans Functionals. J. Chem. Theory Comput., August 2023. doi:10.1021/acs.jctc.3c00652.

Other relevant references include

Papers introducing Koopmans functionals

  • I. Dabo, M. Cococcioni, and N. Marzari. Non-Koopmans Corrections in Density-functional Theory: Self-interaction Revisited. January 2009. arXiv:0901.2637.

  • I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni. Koopmans' condition for density-functional theory. Phys. Rev. B, 82(11):115121, September 2010. doi:10.1103/PhysRevB.82.115121.

  • G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari. Koopmans-compliant functionals and their performance against reference molecular data. Phys. Rev. B, 90(7):075135, August 2014. doi:10.1103/PhysRevB.90.075135.

  • G. Borghi, C. H. Park, N. L. Nguyen, A. Ferretti, and N. Marzari. Variational minimization of orbital-density-dependent functionals. Phys. Rev. B, 91(15):155112, April 2015. doi:10.1103/PhysRevB.91.155112.

Linear-response formalism

  • N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Screening in Orbital-Density-Dependent Functionals. J. Chem. Theory Comput., 14(5):2549–2557, May 2018. doi:10.1021/acs.jctc.7b01116.

Application to molecules

  • I. Dabo, A. Ferretti, C. H. Park, N. Poilvert, Y. Li, M. Cococcioni, and N. Marzari. Donor and acceptor levels of organic photovoltaic compounds from first principles. Phys. Chem. Chem. Phys., 15(2):685–695, January 2013. doi:10.1039/c2cp43491a.

  • N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. First-Principles Photoemission Spectroscopy and Orbital Tomography in Molecules from Koopmans-Compliant Functionals. Phys. Rev. Lett., 114(16):166405, April 2015. doi:10.1103/PhysRevLett.114.166405.

  • N. L. Nguyen, G. Borghi, A. Ferretti, and N. Marzari. First-Principles Photoemission Spectroscopy of DNA and RNA Nucleobases from Koopmans-Compliant Functionals. J. Chem. Theory Comput., 12(8):3948–3958, August 2016. doi:10.1021/acs.jctc.6b00145.

  • N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Koopmans-compliant functionals and potentials and their application to the GW100 test set. J. Chem. Theory Comput., 15(3):1905–1914, March 2019. doi:10.1021/acs.jctc.8b00976.

Application to solids

  • N. L. Nguyen, N. Colonna, A. Ferretti, and N. Marzari. Koopmans-compliant spectral functionals for extended systems. Phys. Rev. X, 8(2):021051, May 2018. doi:10.1103/PhysRevX.8.021051.

  • R. De Gennaro, N. Colonna, E. Linscott, and N. Marzari. Bloch's theorem in orbital-density-dependent functionals: Band structures from Koopmans spectral functionals. Phys. Rev. B, 106(3):035106, July 2022. doi:10.1103/PhysRevB.106.035106.

  • N. Colonna, R. D. Gennaro, E. Linscott, and N. Marzari. Koopmans Spectral Functionals in Periodic Boundary Conditions. J. Chem. Theory Comput., August 2022. doi:10.1021/acs.jctc.2c00161.

Connection with many-body formulations

  • A. Ferretti, I. Dabo, M. Cococcioni, and N. Marzari. Bridging density-functional and many-body perturbation theory: orbital-density dependence in electronic-structure functionals. Phys. Rev. B, 89(19):195134, May 2014. doi:10.1103/PhysRevB.89.195134.

All references

1

V. I. Anisimov and A. V. Kozhevnikov. Transition state method and Wannier functions. Phys. Rev. B, 72(7):075125, August 2005. doi:10.1103/PhysRevB.72.075125.

2

S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 73(2):515–562, July 2001. doi:10.1103/RevModPhys.73.515.

3

G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari. Koopmans-compliant functionals and their performance against reference molecular data. Phys. Rev. B, 90(7):075135, August 2014. doi:10.1103/PhysRevB.90.075135.

4

G. Borghi, C. H. Park, N. L. Nguyen, A. Ferretti, and N. Marzari. Variational minimization of orbital-density-dependent functionals. Phys. Rev. B, 91(15):155112, April 2015. doi:10.1103/PhysRevB.91.155112.

5

N. Colonna, R. D. Gennaro, E. Linscott, and N. Marzari. Koopmans Spectral Functionals in Periodic Boundary Conditions. J. Chem. Theory Comput., August 2022. doi:10.1021/acs.jctc.2c00161.

6

N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Screening in Orbital-Density-Dependent Functionals. J. Chem. Theory Comput., 14(5):2549–2557, May 2018. doi:10.1021/acs.jctc.7b01116.

7

N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Koopmans-compliant functionals and potentials and their application to the GW100 test set. J. Chem. Theory Comput., 15(3):1905–1914, March 2019. doi:10.1021/acs.jctc.8b00976.

8

I. Dabo, M. Cococcioni, and N. Marzari. Non-Koopmans Corrections in Density-functional Theory: Self-interaction Revisited. January 2009. arXiv:0901.2637.

9

I. Dabo, A. Ferretti, C. H. Park, N. Poilvert, Y. Li, M. Cococcioni, and N. Marzari. Donor and acceptor levels of organic photovoltaic compounds from first principles. Phys. Chem. Chem. Phys., 15(2):685–695, January 2013. doi:10.1039/c2cp43491a.

10

I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni. Koopmans' condition for density-functional theory. Phys. Rev. B, 82(11):115121, September 2010. doi:10.1103/PhysRevB.82.115121.

11

R. De Gennaro, N. Colonna, E. Linscott, and N. Marzari. Bloch's theorem in orbital-density-dependent functionals: Band structures from Koopmans spectral functionals. Phys. Rev. B, 106(3):035106, July 2022. doi:10.1103/PhysRevB.106.035106.

12

A. Ferretti, I. Dabo, M. Cococcioni, and N. Marzari. Bridging density-functional and many-body perturbation theory: orbital-density dependence in electronic-structure functionals. Phys. Rev. B, 89(19):195134, May 2014. doi:10.1103/PhysRevB.89.195134.

13

D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B, 88(8):085117, August 2013. doi:10.1103/PhysRevB.88.085117.

14

E. Kraisler and L. Kronik. Piecewise Linearity of Approximate Density Functionals Revisited: Implications for Frontier Orbital Energies. Phys. Rev. Lett., 110(12):126403, March 2013. doi:10.1103/PhysRevLett.110.126403.

15

L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput., 8(5):1515–1531, May 2012. doi:10.1021/ct2009363.

16

K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I. E. Castelli, S. J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J. K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J. A. Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. van Setten, V. Van Speybroeck, J. M. Wills, J. R. Yates, G.-X. Zhang, and S. Cottenier. Reproducibility in density functional theory calculations of solids. Science, 351(6280):aad3000, March 2016. doi:10.1126/science.aad3000.

17

C. Li, X. Zheng, N. Q. Su, and W. Yang. Localized orbital scaling correction for systematic elimination of delocalization error in density functional approximations. Natl. Sci. Rev., 5:203–215, 2018. URL: https://academic.oup.com/nsr/article/5/2/203/4104965 (visited on 2020-04-04).

18

E. B. Linscott, N. Colonna, R. De Gennaro, N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. Koopmans: An Open-Source Package for Accurately and Efficiently Predicting Spectral Properties with Koopmans Functionals. J. Chem. Theory Comput., August 2023. doi:10.1021/acs.jctc.3c00652.

19

J. Ma and L.-W. Wang. Using Wannier functions to improve solid band gap predictions in density functional theory. Sci. Rep., 6(1):24924, April 2016. doi:10.1038/srep24924.

20

N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys., 84(4):1419–1475, October 2012. doi:10.1103/RevModPhys.84.1419.

21

F. Nattino, C. Dupont, N. Marzari, and O. Andreussi. Functional Extrapolations to Tame Unbound Anions in Density-Functional Theory Calculations. J. Chem. Theory Comput., 15(11):6313–6322, November 2019. doi:10.1021/acs.jctc.9b00552.

22

N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. First-Principles Photoemission Spectroscopy and Orbital Tomography in Molecules from Koopmans-Compliant Functionals. Phys. Rev. Lett., 114(16):166405, April 2015. doi:10.1103/PhysRevLett.114.166405.

23

N. L. Nguyen, G. Borghi, A. Ferretti, and N. Marzari. First-Principles Photoemission Spectroscopy of DNA and RNA Nucleobases from Koopmans-Compliant Functionals. J. Chem. Theory Comput., 12(8):3948–3958, August 2016. doi:10.1021/acs.jctc.6b00145.

24

N. L. Nguyen, N. Colonna, A. Ferretti, and N. Marzari. Koopmans-compliant spectral functionals for extended systems. Phys. Rev. X, 8(2):021051, May 2018. doi:10.1103/PhysRevX.8.021051.

25

M. R. Pederson, R. A. Heaton, and C. C. Lin. Local-density Hartree–Fock theory of electronic states of molecules with self-interaction correction. J. Chem. Phys., 80(5):1972–1975, March 1984. doi:10.1063/1.446959.

26

G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari. Precision and efficiency in solid-state pseudopotential calculations. npj Comput Mater, 4(1):1–13, December 2018. doi:10.1038/s41524-018-0127-2.

27

P. Scherpelz, M. Govoni, I. Hamada, and G. Galli. Implementation and Validation of Fully Relativistic GW Calculations: Spin–Orbit Coupling in Molecules, Nanocrystals, and Solids. J. Chem. Theory Comput., 12(8):3523–3544, August 2016. doi:10.1021/acs.jctc.6b00114.

28

M. Schlipf and F. Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. Computer Physics Communications, 196:36–44, November 2015. doi:10.1016/j.cpc.2015.05.011.

29

Y. Schubert, N. Marzari, and E. Linscott. Testing Koopmans spectral functionals on the analytically solvable Hooke's atom. The Journal of Chemical Physics, 158(14):144113, April 2023. doi:10.1063/5.0138610.

30

J. H. Skone, M. Govoni, and G. Galli. Nonempirical range-separated hybrid functionals for solids and molecules. Phys. Rev. B, 93(23):235106, June 2016. doi:10.1103/PhysRevB.93.235106.

31

D. Wing, G. Ohad, J. B. Haber, M. R. Filip, S. E. Gant, J. B. Neaton, and L. Kronik. Band gaps of crystalline solids from Wannier-localization–based optimal tuning of a screened range-separated hybrid functional. Proc. Natl. Acad. Sci., 118(34):e2104556118, August 2021. doi:10.1073/pnas.2104556118.

32

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G. -M. Rignanese. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Computer Physics Communications, 226:39–54, May 2018. doi:10.1016/j.cpc.2018.01.012.