
koopmans
Release v1.0.1

Edward Linscott, Riccardo De Gennaro and Nicola Colonna

Dec 14, 2023

CONTENTS

1 About 3

2 Quick start 5

3 Theory 7
3.1 Quasiparticle energies, piecewise linearity, and Koopmans’ theorem 7
3.2 Koopmans functionals . 8
3.3 The key ingredients in a Koopmans calculation . 10
3.4 The Koopmans workflows . 14
3.5 Limitations . 14
3.6 Related methods . 14

4 Installation 17
4.1 Downloading . 17
4.2 Installing . 17

5 The input file 19
5.1 The workflow block . 20
5.2 The atoms block . 20
5.3 The kpoints block . 21
5.4 The pseudopotentials block . 21
5.5 The calculator_parameters block . 21
5.6 The convergence block . 24
5.7 The plotting block . 24
5.8 The ml block . 24

6 How to run 25
6.1 Running via python . 25
6.2 Parallelism . 25
6.3 Pseudopotentials . 26

7 Modules 27
7.1 The workflow module . 27

8 Tutorials 29
8.1 Tutorial 1: the ionization potential and electron affinity of ozone . 29
8.2 Tutorial 2: the band structure of bulk silicon (calculated via a supercell) 34
8.3 Tutorial 3: the band structure of ZnO (calculated with explicit k-points) 41
8.4 Tutorial 4: running convergence tests . 47
8.5 Tutorial 5: using machine learning to predict the screening parameters of water molecules 51

i

9 Support and feedback 57

10 References 59
10.1 Selected references . 59
10.2 All references . 60

11 Useful links 61
11.1 koopmans . 61
11.2 Quantum Espresso . 61
11.3 EPFL . 61

Bibliography 63

Index 67

ii

koopmans, Release v1.0.1

Fig. 1: a package for performing and automating Koopmans functional calculations

CONTENTS 1

koopmans, Release v1.0.1

2 CONTENTS

CHAPTER

ONE

ABOUT

koopmans is a package for performing Koopmans spectral functional calculations with Quantum ESPRESSO, developed
by researchers in the THEOS research group at EPFL.

The package includes. . .

• the official version of Quantum ESPRESSO, which contains Koopmans functionals implemented with a 𝑘-point
framework

• a modified version of Quantum ESPRESSO v4.1with Koopmans functionals implemented within the cp.x code
(Γ-only)

• koopmans, a python package and executable that makes running Koopmans spectral calculations with the above
codes easy!

3

http://theossrv1.epfl.ch/
https://www.epfl.ch/en/

koopmans, Release v1.0.1

4 Chapter 1. About

CHAPTER

TWO

QUICK START

1. install the code following the installation instructions

2. download the input file for tutorial 1

3. run koopmans ozone.json

Having done this, you have run your very first Koopmans calculation! You will see that a number of files have been
generated. These contain the outputs of the calculation. For example, the ionisation potential and electron affinity of
ozone are given by the negative of the HOMO and LUMO listed in the file final/ki_final.cpo. For more details,
see tutorial 1.

5

koopmans, Release v1.0.1

6 Chapter 2. Quick start

CHAPTER

THREE

THEORY

This section contains a brief introduction to Koopmans functionals.

3.1 Quasiparticle energies, piecewise linearity, and Koopmans’ theo-
rem

Density functional theory (DFT) is a remarkably successful theory. However, its prediction of quasiparticle energies
is very unreliable. Indeed, while the Kohn-Sham eigenvalues may loosely mirror experimental quasiparticle energies,
there is formally no connection between the two (except for the HOMO in exact DFT, which is related to the decay of
the density at large distances).

Furthermore, because DFT is an approximate theory the Kohn-Sham orbitals suffer from a few well-known errors,
making them an even worse proxy for quasiparticle energies. Chief among these errors is “self-interaction error”
(SIE).

DFT suffers from “one-body self-interaction error” because of the way it treats the Hartree term. For a wavefunction
represented by a single Slater determinant, the Hartree term Φ𝑖 felt by the ith particle is given by

Φ𝑖(r) =
∑︁
𝑖 ̸=𝑗

∫︁
𝑑r′

|𝜓𝑛𝑗 (r
′)|2

|r− r′|

but in DFT we replace this orbital-dependent term with

Φ(r) =

∫︁
𝑑r′

𝜌(r)

r− r′

which ignores the 𝑖 ̸= 𝑗 of the sum. This would be perfectly fine if the xc-functional perfectly cancelled this self-
Hartree term, but most xc-functionals do not. Consequently, KS particles tend to over-delocalise in order to minimise
the Coulomb repulsion they feel from their own density.

More generally, DFT suffers from “many-body self-interaction error” (or “delocalisation error”). This manifests itself as
an erroneous curvature in the total energy𝐸(𝑁) of the system as a function of the total number of electrons𝑁 . Compare
this to the exact functional, which we know should be piecewise-linear between the energy at integer occupancies.

Fig. 1: 𝐸(𝑁) for the exact functional, semi-local DFT, and Hartree-Fock

This erroneous curvature directly impacts the Kohn-Sham eigenvalues. For instance, consider the energy of the highest
occupied molecular orbital (HOMO), which is given by

𝜀𝐻𝑂 =
𝜕𝐸

𝜕𝑁

⃒⃒⃒⃒
𝑁=𝑁−

7

koopmans, Release v1.0.1

that is, the gradient of 𝐸(𝑁) approaching 𝑁 from the left. In principle, this energy should be equal to the (indeed we
can see this for the exact functional, where the gradient is given by

𝜀exact
𝐻𝑂 =

𝜕𝐸exact

𝜕𝑁

⃒⃒⃒⃒
𝑁=𝑁−

= 𝐸exact(𝑁)− 𝐸exact(𝑁 − 1)

However, we can see in the following figure that due to the erroneous curvature in the semi-local functional

𝜀sl
𝐻𝑂 =

𝜕𝐸sl

𝜕𝑁

⃒⃒⃒⃒
𝑁=𝑁−

> 𝐸sl(𝑁)− 𝐸sl(𝑁 − 1)

Fig. 2: Close-up of 𝐸(𝑁) for semi-local DFT, showing the consequences of SIE for quasiparticle energies

That is, the Kohn-Sham HOMO eigenvalue is overestimated due to the presence of SIE.

It is not just the HOMO energy that is affected by SIE. By similar logic we can show that SIE affects all of the Kohn-
Sham eigenvalues, and by extension it will detrimentally affect spectral properties such as densities of states, band
structures, and optical spectra.

Given these failures of semi-local DFT, the question becomes how can we relate Kohn-Sham eigenvalues to quasipar-
ticles while addressing self-interaction? The answer: Koopmans functionals.

TODO discuss Koopmans theorem

3.2 Koopmans functionals

3.2.1 The motivating idea behind the functionals

We saw from the previous section that DFT Kohn-Sham eigenvalues. . .

a. are not formally related to quasiparticle energies

b. suffer from self-interaction error

These two points inspire the design of Koopmans functionals. The key idea behind these functionals is that we desire
a functional whose orbital1 energies

𝜀Koopmans
𝑖 = ⟨𝜙𝑖|𝐻|𝜙𝑖⟩ =

𝑑𝐸Koopmans

𝑑𝑓𝑖

possess two key properties:

1. 𝜀Koopmans
𝑖 is independent of the corresponding orbital occupancy 𝑓𝑖

2. 𝜀Koopmans
𝑖 is equal to the corresponding DFT total energy difference ∆𝐸Koopmans

𝑖 that corresponds to the addi-
tion/removal of an electron from the corresponding orbital 𝑖

Property 1 means that we will be SIE-free, because the curvature of 𝐸Koopmans with respect to 𝑓𝑖 will be zero for every
orbital 𝑖. Meanwhile, property 2 is a necessary condition for piecewise linearity of the total energy. It also means that
the quasiparticle energies are on much more stable theoretical footing, because they are expressly related to total energy
differences, which are ground-state properties.

1 To be specific, by “orbitals” we mean the variational orbitals (explained here)

8 Chapter 3. Theory

koopmans, Release v1.0.1

3.2.2 Derivation of the functionals

So how do we construct a functional that posesses these properties? The brief derivation is as follows: let us assume a
functional of the form

𝐸Koopmans = 𝐸𝐷𝐹𝑇 +
∑︁
𝑖

Π𝑖

This is a “corrective” functional – that is, we start from the exact or an approximate DFT energy functional 𝐸𝐷𝐹𝑇 (the
“base” functional) and add some as-of-yet undetermined corrections Π𝑖 to each orbital (indexed by 𝑖). If we take the
derivative with respect to the occupancy of the 𝑗th orbital then we have

𝜂𝑗 =
𝑑𝐸𝐷𝐹𝑇

𝑑𝑓𝑗

⃒⃒⃒⃒
𝑓𝑗=𝑠

+
𝑑Π𝑗

𝑑𝑓𝑗

⃒⃒⃒⃒
𝑓𝑗=𝑠

= ⟨𝜙𝑗 |ℎ̂DFT(𝑠)|𝜙𝑗⟩+
𝑑Π𝑗

𝑑𝑓𝑗

⃒⃒⃒⃒
𝑓𝑗=𝑠

where we assumed that the cross-term derivatives 𝑑Π𝑖/𝑑𝑓𝑗 vanish, and because 𝐸Koopmans ought to be linear in 𝑓𝑗 ,
we replaced its derivative with some yet-to-be deterimined constant 𝜂𝑗 . For the second equality we invoked Janak’s
theorem.

Assuming that the our energy correction Π𝑗 is zero at integer occupancies, and neglecting for the moment any orbital
relaxation as the orbital occupancies change, it follows that

Π𝑢
𝑗 = −

∫︁ 𝑓𝑗

0

⟨𝜙𝑗 |ℎ̂DFT(𝑠)|𝜙𝑗⟩𝑑𝑠+ 𝑓𝑗𝜂𝑗

where the 𝑢 superscript denotes the fact that we neglected orbital relaxation, and thus this term is “unscreened”. To
account for this screening we must introduce some screening parameters {𝛼𝑖} such that Π𝑗 = 𝛼𝑗Π

𝑢
𝑗 .

Thus we arrive at the form of the Koopmans functional:

𝐸Koopmans[𝜌, {𝑓𝑖}, {𝛼𝑖}] = 𝐸𝐷𝐹𝑇 [𝜌] +
∑︁
𝑖

𝛼𝑖

(︃
−
∫︁ 𝑓𝑖

0

⟨𝜙𝑖|ℎ̂DFT(𝑠)|𝜙𝑖⟩𝑑𝑠+𝑓𝑖𝜂𝑖

)︃

This functional, by construction, has orbital energies that possess two key properties discussed above.

3.2.3 Understanding the functional

To understand this functional a little better, consider the following figure, that represents the total energy of a system
with 𝑁 + 𝑓𝑖 electrons, with a partially-occupied frontier orbital 𝑖.

Fig. 3: Illustration of the Koopmans functional, term-by-term

What energy does the Koopmans functional assign to this system? Well, it starts with the energy given by the base func-
tional 𝐸𝐷𝐹𝑇 [𝜌]. This is denoted as point 1 in the above figure. From this term we subtract 𝛼𝑖

∫︀ 𝑓𝑖
0
⟨𝜙𝑖|ℎ̂DFT(𝑠)|𝜙𝑖⟩𝑑𝑠

– that is, we remove the spurious non-linear dependence of the energy on the orbital occupancy. This takes us from
point 1 to point 2 in the figure. Finally we add back in 𝛼𝑖𝑓𝑖𝜂𝑖, a term that is linear in 𝑓𝑖 with some as-of-yet unspecified
gradient 𝛼𝑖𝜂𝑖 (point 3).

The end result is that 𝐸Koopmans is explicitly linear in 𝑓𝑖 and thus it satisfies property 1 by construction. As for property
2, the value of 𝜀Koopmans

𝑖 is given by 𝛼𝑖𝜂𝑖. We will therefore choose our these two parameters in order to guarantee that
these quasiparticle energies correspond to the desired total energy differences. We will discuss how exactly this is done
later.

3.2. Koopmans functionals 9

koopmans, Release v1.0.1

3.3 The key ingredients in a Koopmans calculation

3.3.1 The variational orbitals

The one important distinction that is worth making right away is that Koopmans functionals are not density functionals,
but orbital-density-dependent (ODD) functionals. This is because in addition to being dependent on the total density
𝜌 they are also dependent on the individual occupancies. Indeed, each orbital will be subjected to a different potential,
and when we solve a Koopmans functional we must minimise the total energy with respect to the entire set of orbitals
as opposed to just the total density.

A further complication of ODDFTs is that we actually have two sets of orbitals that we must be careful to distinguish.
The set of orbitals that minimise the total energy are the so-called variational orbitals. Because the leading term in an
orbital’s Koopmans potential is the negative of that orbital’s self-Hartree energy, these variational orbitals tend to be
very localised.

Fig. 4: Two variational orbitals of polyethylene. Figure taken from [24]

If we have minimised the total Koopmans energy we can then construct the Hamiltonian. If we then diagonalise this
Hamiltonian we would obtain the so-called canonical orbitals. In a DFT framework, diagonalising the Hamiltonian
would yield exactly the same orbitals that minimise the total energy. However, in an ODDFT, this is not the case, because
the total energy is not invariant with respect to unitary rotations of a given set of orbitals, and thus the variational
and canonical orbitals are different. In contrast to the variational orbitals, the canonical orbitals are typically very
delocalised and much more closely resemble the Kohn-Sham orbitals of DFT.

Fig. 5: A canonical orbital of polyethylene. Figure taken from [24]

Note: Transforming a DFT to an ODDFT may seem like a bothersome complication but actually it is a natural
generalization – indeed, an ODDFT is in fact an energy-discretized spectral functional theory [12].

10 Chapter 3. Theory

koopmans, Release v1.0.1

3.3.2 The screening parameters

In any Koopmans calculation, we must obtain the set of screening parameters {𝛼𝑖}. As we discussed earlier, we
would like the functional’s total energy to be piecewise linear i.e. we would like quasiparticle energy to match the
corresponding total energy differences.

Specifically, we would like 𝜀Koopmans
𝑖 = ∆𝐸Koopmans

𝑖 , where

∆𝐸Koopmans
𝑖 =

{︃
𝐸Koopmans(𝑁)− 𝐸Koopmans

𝑖 (𝑁 − 1) filled orbitals
𝐸Koopmans

𝑖 (𝑁 + 1)− 𝐸Koopmans(𝑁) empty orbitals

where 𝐸Koopmans
𝑖 (𝑁 ± 1) is the total energy of the system where we add/remove an electron from variational orbital 𝑖

and allow the rest of the system to relax.

We will use this condition to determine the screening parameters ab initio. In order to do so, there are two potential
approaches: (a) via SCF calculations or (b) via DFPT .

SCF

In this approach, we explicitly calculate all of the energy differences ∆𝐸Koopmans
𝑖 via a series of constrained Koopmans

or DFT calculations. Specifically, given a starting guess {𝛼0
𝑖 } for the screening parameters, an improved guess for the

screening parameters can be obtained via

𝛼𝑛+1
𝑖 = 𝛼𝑛

𝑖

∆𝐸𝑖 − 𝜀0𝑖 (1)

𝜀
𝛼𝑛

𝑖
𝑖 (1)− 𝜀0𝑖 (1)

for filled orbitals and

𝛼𝑛+1
𝑖 = 𝛼𝑛

𝑖

∆𝐸𝑖 − 𝜀0𝑖 (0)

𝜀
𝛼𝑛

𝑖
𝑖 (0)− 𝜀0𝑖 (0)

for empty orbitals, where

𝜀𝛼𝑖
𝑖 (𝑓) =

𝜕𝐸Koopmans

𝜕𝑓𝑖

⃒⃒⃒⃒
𝑓𝑖=𝑓

= ⟨𝜙𝑖|�̂�DFT + 𝛼𝑖𝑣
Koopmans
𝑖 |𝜙𝑖⟩

⃒⃒⃒
𝑓𝑖=𝑓

All of these quantities for calculating 𝛼𝑛+1
𝑖 are obtained from constrained Koopmans and DFT calculations. Specifi-

cally, a 𝑁 -electron Koopmans calculation yields 𝐸Koopmans(𝑁), 𝜀𝛼
𝑛
𝑖

𝑖 , and 𝜀0𝑖 , and a constrained 𝑁 ± 1-electron calcu-
lation yields 𝐸Koopmans

𝑖 (𝑁 ± 1).

Typically, very few iterations are required in order to reach self-consistency.

Note: For a periodic system, this method for determining the screening parameters requires a supercell treatment.
This is because the𝑁 ± 1-electron systems have a charged defect and a supercell is required in order to avoid spurious
interactions between periodic images.

3.3. The key ingredients in a Koopmans calculation 11

koopmans, Release v1.0.1

DFPT

While the SCF approach can provide us with all of the ingredients to calculate the screening parameters, it is a somewhat
cumbersome approach. We must perform several constrained DFT/Koopmans calculations, and for periodic systems
these must be performed in a supercell.

An alternative to the SCF approach is to take advantage of density functional perturbation theory (DFPT) [2] in order
to compute the screening coefficients. In this approach the energy is approximated as a quadratic function of the
occupation number, and the expression for the screening coefficients reduces to

𝛼𝑖 =
𝑑2𝐸DFT/𝑑𝑓

2
𝑖

𝜕2𝐸DFT/𝜕𝑓2𝑖
=

⟨𝑛𝑖|𝜖−1𝑓Hxc|𝑛𝑖⟩
⟨𝑛𝑖|𝑓Hxc|𝑛𝑖⟩

where 𝑑
𝑑𝑓𝑖

and 𝜕
𝜕𝑓𝑖

represent variations done accounting for the orbitals relaxation or not, respectively, 𝜖(r, r′) is the
microscopic dielectric function of the material, 𝑓Hxc(r, r

′) = 𝛿2𝐸𝐻𝑥𝑐/𝛿𝜌(r)𝛿𝜌(r
′) is the Hartree-exchange and cor-

relation kernel, and 𝑛𝑖(r) = |𝜙𝑖(r)|2 is the orbital density.

The evaluation of the screening coefficients within this approach only requires quantities available from a 𝑁 -electron
calculation. Specifically, we can rewrite the above equation in terms of the density response ∆𝑖𝜌 to a perturbing
potential 𝑉 𝑖

pert generated by the orbital density 𝑛𝑖:

𝛼𝑖 = 1 +
⟨𝑉 𝑖

pert|∆𝑖𝜌⟩
⟨𝑛𝑖|𝑉 𝑖

pert⟩

The advantage of this approach compared to the SCF is that there is no need for a supercell treatment, and in the case
of periodic solids a primitive cell implementation can be used. By exploiting Bloch symmetries the linear response
formula for the screening coefficients can be decomposed into a set of independent problems, one for each 𝑞 point
sampling the Brillouin zone of the primitive cell

𝛼𝑖 = 1 +

∑︀
q⟨𝑉 𝑖

pert,q|∆𝑖
q𝜌⟩∑︀

q⟨𝜌𝑖q|𝑉 𝑖
pert,q⟩

This greatly reduces the computational cost of the calculation (see below), but as a consequence the DFPT approach
has a few limitations:

1. We have approximated the energy to second order. In most cases this is very accurate, correctly capturing the
leading Hartree contribution and only missing higher-order xc contributions.

2. It is only currently implemented for the KI functional. For KIPZ, the PZ kernel (i.e. the second derivative of the
PZ energy with respect to the density) is required and this is not implemented in common electronic structure
codes. (See below for an explanation of what we mean by “KI” and “KIPZ”.)

For more details regarding the DFPT method, see [7].

Computational scaling for periodic systems

In the SCF approach, the screening coefficients are computed within a supercell and with a finite difference approach, by
performing additional total-energy calculations where the occupation of a single variational orbital is constrained [24].
This requires an SCF calculation per orbital, which takes a computational time𝑇 SC that roughly scales as𝒪

(︁(︀
𝑁SC

el

)︀3)︁,
where 𝑁SC

el is the number of electrons in the supercell.

The DFPT approach scales as 𝑇PC ∝ 𝑁q𝑁k𝑁
PC
el

3. This is the typical computational time for the SCF cycle𝑁k𝑁
PC
el

3,
times the number of independent monochromatic perturbations 𝑁q.

Using the relation 𝑁SC
el = 𝑁k𝑁

PC
el , and the fact that 𝑁q = 𝑁k, the ratio between the supercell and primitive com-

putational times is 𝑇 SC/𝑇PC ∝ 𝑁q. Therefore as the supercell size (and, equivalently, the number of q-points in the
primitive cell) increases, the primitive-cell-DFPT approach becomes more and more computationally efficient.

12 Chapter 3. Theory

koopmans, Release v1.0.1

3.3.3 The flavour: KI or KIPZ

As we have seen previously, there is some freedom in how we define our Koopmans functional. Namely, we need to
choose values for 𝜂𝑖, the gradient of the energy as a function of the the occupancy of orbital 𝑖, for each value of 𝑖
(modulo the corresponding screening term).

There are several different ways to define these gradient terms, and each approach gives rise to a different “flavour” of
Koopmans functionals.

KI

In the “KI” approach, 𝜂𝑖 is chosen as the total energy difference of two adjacent electronic configurations with integer
occupations:

𝜂KI
𝑖 = 𝐸DFT[𝑓𝑖 = 1]− 𝐸DFT[𝑓𝑖 = 0] =

∫︁ 1

0

⟨𝜙𝑖|ℎ̂DFT(𝑠)|𝜙𝑖⟩𝑑𝑠

in which case the explicit expression for the unscreened KI Koopmans’ correction becomes

ΠKI
𝑖 = 𝑓𝑖𝜂

KI
𝑖 = 𝐸Hxc[𝜌− 𝜌𝑖]− 𝐸Hxc[𝜌] + 𝑓𝑖 (𝐸Hxc[𝜌− 𝜌𝑖 + 𝑛𝑖]− 𝐸Hxc[𝜌− 𝜌𝑖])

where 𝜌𝑖(r) = 𝑓𝑖|𝜙𝑖(r)|2 and 𝑛𝑖(r) = |𝜙𝑖(r)|2. 𝐸Hxc denotes the Hartree and exchange-correlation energy corre-
sponding to the underlying base functional.

Note: It can be seen that at integer occupations, the KI energy correction vanishes i.e. ΠKI
𝑖 = 0. In other words,

the KI functional preserves the potential energy surface of the base functional! But while the energy is vanishing, the
potential is non-vanishing, which means that the KI correction will affect the spectral properties of the system.

KIPZ

In the “KIPZ” approach, the slope 𝜂𝑖 is also chosen as the total energy difference of two adjacent electronic config-
urations with integer occupations, but this time using the Perdew-Zunger (PZ) one-electron-self-interaction corrected
(SIC) functional applied to the approximate DFT base functional:

𝜂KIPZ
𝑖 = 𝐸PZ[𝑓𝑖 = 1]− 𝐸PZ[𝑓𝑖 = 0] =

∫︁ 1

0

⟨𝜙𝑖|ℎ̂PZ
𝑖 (𝑠)|𝜙𝑖⟩𝑑𝑠,

providing the explicit expression for the unscreened ΠKIPZ
𝑖 correction

ΠKIPZ
𝑖 = −

∫︁ 𝑓𝑖

0

⟨𝜙𝑖|ℎ̂DFT(𝑠)|𝜙𝑖⟩𝑑𝑠+ 𝑓𝑖

∫︁ 1

0

⟨𝜙𝑖|ℎ̂PZ
𝑖 (𝑠)|𝜙𝑖⟩𝑑𝑠 .

where

ℎ̂PZ
𝑖 (𝑠) = ℎ̂DFT(𝑠)− 𝑣DFT

Hxc

[︀
𝑠|𝜙𝑖(r)|2

]︀
is the PZ self-interaction correction applied to the 𝑖th variational orbital. This correction removes the Hartree-plus-
exchange-correlation potential for that orbital.

This correction can be rewritten as

ΠKIPZ
𝑖 = ΠKI

𝑖 − 𝑓𝑖𝐸Hxc[𝑛𝑖]

3.3. The key ingredients in a Koopmans calculation 13

koopmans, Release v1.0.1

Note: In the unscreened case (𝛼𝑖 = 1) the KIPZ functional can be thought of as the KI correction applied to the PZ-SIC
functional (this can be verified by replacing the base DFT functional and Hamiltonian with its PZ-SIC counterparts).
However, in the general case of𝛼𝑖 ̸= 1 the KIPZ functional form implies also scaling each PZ self-interaction correction
with its own screening coefficient.

For more details, refer to [3].

3.4 The Koopmans workflows

In a semi-local DFT calculation, all that one needs to do is obtain the ground state density. As discussed in the previous
section, for Koopmans calculations we must also obtain the minimising variational orbitals as well as the screening
parameters. This means that, compared to a standard semi-local DFT calculation, a few additional steps are required.

Typically, a Koopmans calculation can be divided into three stages

1. an initialization step, where the density and variational orbitals are initialized

2. the calculation of screening parameters

3. a final calculation using the obtained variational orbitals and screening parameters

Depending on the method for calculating screening parameters, the resulting workflow can look quite different. Differ-
ences also emerge between molecules and solids. For the latter, maximally localised Wannier functions are typically
used as variational orbitals, which necessitates an additional Wannierization procedure, performed using Wannier90.

Fig. 6: Flowchart of the SCF workflow (click to enlarge)

Fig. 7: The DFPT workflow (click to enlarge)

As you can see, these workflows can become quite complicated, but do not worry! The koopmans code automates the
process of running these workflows.

3.5 Limitations

3.5.1 Issues with metals

TODO

3.6 Related methods

Koopmans functionals have resonance with various methods developed by other groups. These include. . .

• the Wannier transition-state method of Anisimov and Kozhevnikov [1]

• the optimally-tuned range-separated hybrid functionals of Kronik, Neaton, and others [15, 31]

• the localized orbital scaled correction of Yang and others [17]

• the ensemble DFT method of Kreisler, Kronik and others [14]

• the Koopmans-Wannier method of Wang and others [19]

14 Chapter 3. Theory

http://www.wannier.org/

koopmans, Release v1.0.1

For more details, refer to our various publications.

3.6. Related methods 15

koopmans, Release v1.0.1

16 Chapter 3. Theory

CHAPTER

FOUR

INSTALLATION

4.1 Downloading

Koopmans is available to download on github. You can clone it directly with

git clone --recursive git@github.com:epfl-theos/koopmans.git

4.2 Installing

4.2.1 Quick installation

For a quick installation one can simply run make; sudo make install

4.2.2 Detailed installation

Setting up a virtual environment

You are encouraged (but it is not necessary) to first create and activate a virtual environment as follows:

sudo apt-get install python3-pip
pip3 install virtualenv
virtualenv ~/venvs/koopmans
source ~/venvs/koopmans/bin/activate

Note that koopmans requires python v3.7 or later. If your computer’s version of python3 corresponds to an earlier
version, install python v3.7 or later, and then direct virtualenv to create the virtual environment using that specific
installation of python via

virtualenv ~/venvs/koopmans -p /usr/bin/python3.x

17

https://github.com/epfl-theos/koopmans

koopmans, Release v1.0.1

Fetching the submodules

Now, ensure you have downloaded the various git submodules. To do so, run make submodules, or equivalently

git submodule init
git submodule update

Compiling Quantum ESPRESSO

Then you need to compile the copies of Quantum ESPRESSO. To do this, run

make espresso MPIF90=<mpif90>

where <mpif90> should be replaced by the name of your chosen MPI Fortran90 compiler e.g. MPIF90=mpiifort.
The code should automatically detect and link the requisite libraries. (If this fails you may need to manually compile
the two versions of Quantum ESPRESSO contained in the quantum_espresso/ directory.)

Adding Quantum ESPRESSO to your path

To add all of the Quantum ESPRESSO binaries to your path, run

sudo make install

By default this will copy the Quantum ESPRESSO binaries to /usr/local/bin. This requires sudo privileges. If
you do not have sudo privileges, you can either (a) install the codes in a different location by running make install
PREFIX=/path/to/bin/ (substitute /path/to/bin/ with any directory of your choosing that is on your path) or (b)
append bin/ from the current directory to your path.

Installing the workflow manager

Finally, install the python workflow manager, either via make workflow, or

python3 -m pip install --upgrade pip
python3 -m pip install -e .

18 Chapter 4. Installation

CHAPTER

FIVE

THE INPUT FILE

koopmans takes a single JSON file as an input. Here is an example, taken from Tutorial 1:

{
"workflow": {
"functional": "ki",
"method": "dscf",
"init_orbitals": "kohn-sham",
"from_scratch": true,
"alpha_numsteps": 1,
"pseudo_library": "sg15"

},
"atoms": {
"cell_parameters": {
"vectors": [[14.1738, 0.0, 0.0],

[0.0, 12.0, 0.0],
[0.0, 0.0, 12.66]],

"units": "angstrom",
"periodic": false

},
"atomic_positions": {
"units": "angstrom",
"positions": [
["O", 7.0869, 6.0, 5.89],
["O", 8.1738, 6.0, 6.55],
["O", 6.0, 6.0, 6.55]

]
}

},
"calculator_parameters": {
"ecutwfc": 65.0,
"ecutrho": 260.0,
"nbnd": 10

}
}

As you can see, the file is divided into three blocks: workflow, atoms, and calculator_parameters. Other valid blocks
are kpoints, pseudopotentials, and plotting. These are all explained below.

19

koopmans, Release v1.0.1

5.1 The workflow block

The workflow block contains variables that define the details of the workflow that we are going to run.

5.1.1 Valid keywords

5.2 The atoms block

The atoms block contains details about the atomic positions and the simulation cell. It contains two subdictionaries

atomic_positions
contains the atomic positions e.g.

"atomic_positions": {
"units": "angstrom",
"positions": [
["O", 7.0869, 6.0, 5.89],
["O", 8.1738, 6.0, 6.55],
["O", 6.0, 6.0, 6.55]

]
}

Valid options for units are alat, angstrom, bohr, and crystal

cell_parameters
describes the simulation cell. This can be specified explicitly

"cell_parameters": {
"vectors": [[14.1738, 0.0, 0.0],

[0.0, 12.0, 0.0],
[0.0, 0.0, 12.66]],

"units": "angstrom",
"periodic": false

},

(with units angstrom, bohr, or alat), or using ibrav and celldms following the conventions of Quantum
ESPRESSO e.g.

"cell_parameters": {
"periodic": true,
"ibrav": 2,
"celldms": {"1": 10.2622}

},

20 Chapter 5. The input file

koopmans, Release v1.0.1

5.3 The kpoints block

The k_points block specifies the k-point sampling e.g.

"kpoints": {
"grid": [2, 2, 2],
"offset": [0, 0, 0],
"path": "LGXKG"

},

There are five possible entries in this block

grid
a list of three integers specifying the shape of the regular grid of k-points

offset
a list of three integers, either 0 or 1. If 1, the regular k-point grid is offset by half a grid step in that dimension

path
the path to be used in band structure plots, specified as a string of characters corresponding to special points of
the Bravais lattice

density
the number k-points per inverse Angstrom along the path

gamma_only
set to True if the calculation is only sampling the gamma point

5.4 The pseudopotentials block

koopmans ships with several pre-installed pseudopotential libraries. To use these, select a pseudo_library in the
workflow block. Valid options include pseudo_dojo_standard/stringent and sg15.

Alternatively, you can provide your own pseudopotentials via the pseudopotentials block, where we specify the
filenames of the pseudopotentials for each element e.g.

"pseudopotentials": {"O": "O.upf", "H": "H.upf"}

The directory that these pseudopotentials are contained in should be provided via the pseudo_directory keyword in
the workflow block. See here for more details on setting up pseudopotentials.

Warning: Koopmans currently only works with norm-conserving pseudopotentials

5.5 The calculator_parameters block

The calculator_parameters block can be used to specify code-specific codes e.g.

"calculator_parameters": {
"ecutwfc": 60.0,
"pw": {

"system": {
(continues on next page)

5.3. The kpoints block 21

koopmans, Release v1.0.1

(continued from previous page)

"nbnd": 20
}

},
"w90": {

"bands_plot": true,
"projections": [[{"fsite": [0.25, 0.25, 0.25], "ang_mtm": "sp3"}],

[{"fsite": [0.25, 0.25, 0.25], "ang_mtm": "sp3"}]],
"dis_froz_max": 10.6,
"dis_win_max": 16.9

},
"ui": {

"smooth_int_factor": 4
}

},

Note that any keyword specified outside of a subblock (e.g. ecutwfc in the above example) is applied to all calculators
for which it is recognized keyword.

Note: Generally, you will need to provide very few keywords in this block. The vast majority of keywords for each
calculation will be generated automatically. Notable exceptions to this are ecutwfc and (if relevant) the Wannier90
projection

5.5.1 The pw subblock

This subblock contains keywords specific to pw.x (see the list of valid pw.x keywords). Note that they should not be
grouped by namelists as they are in a pw.x input file.

5.5.2 The w90 subblock

This subblock contains keywords specific to wannier90.x, which are documented here. The one keyword for which
the syntax differs is the projections block, via which the user specifies the projections used to initialize the Wannier
functions.

An individual projection can be specified as either a dictionary or a string.

As a dictionary
If specifying a projection via a dictionary, the required entries for this dictionary are

site/csite/fsite
an atom label/cartesian coordinate/fractional coordinate to be used as the projections’ center. The three are
mutually exclusive.

ang_mtm
a string specifying the angular momentum states e.g. "l=2"

The user can also optionally specify zaxis, xaxis, radial, zona (see the Wannier90 User Guide for details).

As a string
If specifying a projection via a string, this string must follow the Wannier90 syntax e.g. "f=0.25,0.25,0.
25:sp3"

These individual projections (either as dictionaries or as strings) must be provided to projections within a list of
lists. This is because for Koopmans calculations, we want to perform the Wannierization in quite a particular way

22 Chapter 5. The input file

https://www.quantum-espresso.org/Doc/INPUT_PW.html
https://github.com/wannier-developers/wannier90/raw/v3.1.0/doc/compiled_docs/user_guide.pdf
https://github.com/wannier-developers/wannier90/raw/v3.1.0/doc/compiled_docs/user_guide.pdf

koopmans, Release v1.0.1

• the occupied and empty manifolds must be wannierized separately.

• the occupied or empty manifold can consist of several well-separated blocks of bands. In this instance it is
desirable to Wannierize each block separately, preventing the Wannierization procedure from mixing bands that
are far apart in energy space.

We can achieve both of the above via the list-of-lists syntax. Consider the following example for the wannierization of
bulk ZnO

"w90": {
"projections": [

[{"site": "Zn", "ang_mtm": "l=0"}],
[{"site": "Zn", "ang_mtm": "l=1"}],
[{"site": "O", "ang_mtm": "l=0"}],
[{"site": "Zn", "ang_mtm": "l=2"},
{"site": "O", "ang_mtm": "l=1"}],
[{"site": "Zn", "ang_mtm": "l=0"}]

],

In ZnO, the bands form several distinct blocks. The first block of occupied bands have Zn 3s character, the next Zn
3p, then O 2s, and finally Zn 3d hybridized with O 2p. The first empty bands have Zn 4s character. You can see this
reflected in the way the projections have been specified. If we were to run the workflow with this configuration, it will
run five separate Wannierizations, one for each sub-list.

This means that

• the occupied and empty manifolds will be wannierized separately, because the cumulative number of projections
in the first four blocks is commensurate with the number of occupied bands in our system

• we prevent mixing bands that belong to different sub-lists

See here for a more detailed tutorial on projections.

Note: The order of the projections blocks is important: they must run from lowest-energy to highest-energy.

Note: If disentanglement keywords such as dis_win_max are provided, these will only be used during the Wannier-
ization of the final block of projections

5.5.3 The pw2wannier subblock

This subblock contains pw2wannier90.x keywords, in a single dictionary with no subdictionaries.

5.5.4 The kcp subblock

This subblock contains keywords specific to kcp.x, a modified version of cp.x for performing Koopmans calcula-
tions. In addition to the keywords associated with cp.x there are several new keywords associated with the Koopmans
implementation in kcp.x. Non-experts will never need to change these.

5.5. The calculator_parameters block 23

https://www.quantum-espresso.org/Doc/INPUT_CP.html

koopmans, Release v1.0.1

5.5.5 The ui subblock

This subblock controls the unfolding and interpolation procedure for generating band structures and densities of states
from -only supercell calculations.

Valid keywords

5.6 The convergence block

This block can be used to customize a convergence calculation.

5.6.1 Valid keywords

See here for a more detailed tutorial on performing convergence calculations.

5.7 The plotting block

This block can be used to customize the band structures and densities of states plots that koopmans generates.

5.7.1 Valid keywords

5.8 The ml block

Warning: This feature is experimental

This block controls the machine-learning of screening parameters.

5.8.1 Valid keywords

24 Chapter 5. The input file

CHAPTER

SIX

HOW TO RUN

To run a calculation from the command line, all that is required is

$ koopmans <seed>.json

where <seed>.json is a koopmans input file. The format of the input file is documented here.

6.1 Running via python

It is possible to run koopmans workflows from within python, bypassing the need for an input file entirely. To do this,
all you need to do is create a SinglepointWorkflow object

wf = SinglepointWorkflow(...)

and then simply call

wf.run()

For details of how to initialize a workflow object, see the workflow class documentation. After a calculation has finished,
you can access the individual calculations e.g.

final_calc = wf.calculations[-1]

and fetch their results e.g.

total_energy = final_calc.results['energy']

6.2 Parallelism

In order to run the code in parallel, define the environment variables PARA_PREFIX and PARA_POSTFIX. These are
defined in the same way as in Quantum ESPRESSO, e.g.

export PARA_PREFIX="srun"
export PARA_POSTFIX="-npool 4"

25

koopmans, Release v1.0.1

6.3 Pseudopotentials

Currently, Koopmans functionals only works with norm-conserving pseudopotentials. We suggest you use optimized
norm-conserving Vanderbilt pseudopotentials, such as

• the SG15 library

• the Pseudo Dojo library

For convenience, koopmans already ships with both of these pseudopotential libraries and you can simply select the
one you want to use using the pseudo_library keyword.

If you prefer to use your own pseudopotentials, add them to src/koopmans/pseudopotentials/<my_pseudos>/
<functional>, where <my_pseudos> is a name of your choosing and <functional> is the functional used to gen-
erate your pseudopotentials. You can then direct koopmans to use these pseudopotentials by setting the keywords
pseudo_library and base_functional to <my_pseudos> and <functional> respectively.

Alternatively, you can direct the code to always use your personal pseudopotentials directory by defining the variable

export ESPRESSO_PSEUDO="/path/to/pseudopotential/folder/"

26 Chapter 6. How to run

http://www.quantum-simulation.org/potentials/sg15_oncv/index.htm
http://www.pseudo-dojo.org/index.html

CHAPTER

SEVEN

MODULES

In this section we document the various classes defined within the koopmans python package.

7.1 The workflow module

The central objects in koopmans are Workflow objects. We use these to define and run workflows, as described here.
The workflow that runs most calculations is the SinglepointWorkflow, defined as follows.

class koopmans.workflows.SinglepointWorkflow(atoms, pseudopotentials={}, kpoints=None,
projections=None, name='koopmans_workflow',
parameters={}, calculator_parameters=None,
plotting={}, ml={}, autogenerate_settings=True,
version=None, **kwargs)

Abstract base class that defines a Koopmans workflow

Parameters

atoms
[Atoms] an ASE Atoms object defining the atomic positions, cell, etc

pseudopotentials
[Dict[str, str]] a dictionary mapping atom labels to pseudopotential filenames

kpoints
[koopmans.kpoints.Kpoints] a dataclass defining the k-point sampling and paths

projections
[ProjectionsBlocks] The projections to be used in the Wannierization

name
[str] a name for the workflow

parameters
[Dict[str, Any] | koopmans.settings.WorkflowSettingsDict] a dictionary specifying any work-
flow settings to use; note that a simpler alternative is to provide workflow settings as keyword
arguments

calculator_parameters
[Dict[str, koopmans.settings.SettingsDict]] a dictionary containing calculator-specific set-
tings; as for the parameters, it is usually simpler to specify these individually as keyword
arguments

plotting
[koopmans.settings.PlotSettingsDict] a dictionary containing settings specific to plotting;
again, it is usually simpler to specify these individually as keyword arguments

27

koopmans, Release v1.0.1

autogenerate_settings
[bool] if True (the default), autogenerate various calculator settings; the only scenario where
you do not want to do this is when creating a new workflow from a .kwf file

**kwargs
any valid workflow, calculator, or plotting settings e.g. {"functional": "ki",
"ecutwfc": 50.0}

Examples

Running a Koopmans calculation on ozone

>>> from ase.build import molecule
>>> from koopmans.workflows import SinglepointWorkflow
>>> ozone = molecule('O3', vacuum=5.0, pbc=False)
>>> wf = SinglepointWorkflow(ozone, ecutwfc = 20.0)
>>> wf.run()

Running a Koopmans calculation on GaAs

>>> from ase.build import bulk
>>> from koopmans.projections import ProjectionBlocks
>>> from koopmans.kpoints import Kpoints
>>> from koopmans.workflows import SinglepointWorkflow
>>> gaas = bulk('GaAs', crystalstructure='zincblende', a=5.6536)
>>> projs = ProjectionBlocks.fromlist([["Ga: d"], ["As: sp3"], ["Ga: sp3"]],
>>> spins=[None, None, None],
>>> atoms=gaas)
>>> kpoints = Kpoints(grid=[2, 2, 2])
>>> wf = SinglepointWorkflow(gaas, kpoints=kpoints, projections=projs, init_
→˓orbitals='mlwfs',
>>> pseudo_library='sg15_v1.0', ecutwfc=40.0,
>>> calculator_parameters={'pw': {'nbnd': 45},
>>> 'w90_emp': {'dis_froz_max': 14.6, 'dis_win_max': 18.6}}
→˓)
>>> wf.run()

28 Chapter 7. Modules

CHAPTER

EIGHT

TUTORIALS

8.1 Tutorial 1: the ionization potential and electron affinity of ozone

In this tutorial, we will calculate the ionisation potential and electron affinity of ozone.

8.1.1 The input

The input file for this calculation can be downloaded here. Just to briefly highlight the most important details of the
workflow block

2 "workflow": {
3 "functional": "ki",
4 "method": "dscf",

here we select the KI functional (as opposed to KIPZ),

3 "functional": "ki",
4 "method": "dscf",
5 "init_orbitals": "kohn-sham",

specifies that we are going to calculate the screening parameters via a SCF procedure, whereby we compute the energies
of various 𝑁 , 𝑁 − 1, and 𝑁 + 1-electron systems (see the theory section for details), and

4 "method": "dscf",
5 "init_orbitals": "kohn-sham",
6 "from_scratch": true,

specifies that we have chosen to use the Kohn-Sham orbitals as our variational orbitals. This is common practice for
molecules.

Meanwhile, the atoms block describes the both the cell and the atoms it contains. If you are familiar with Quantum
ESPRESSO input files then most of this should look very familiar to you (albeit in JSON format).

29

koopmans, Release v1.0.1

8.1.2 Running the calculation

In order to run the calculation, simply run

koopmans ozone.json | tee ozone.out

Tip: In order to run in parallel, set the PARA_PREFIX environment variable to mpirun -np 4 (or similar)

8.1.3 The output

First, let us inspect the contents of ozone.out: after the header we can see there are a list of Quantum ESPRESSO
calculations that have been run by koopmans. These come under three main headings.

Initialization

The first step in any Koopmans calculation is the initialization step. In this step we initialize the density and the
variational orbitals.

14 Initialisation of density and variational orbitals
15 ==
16 Running init/dft_init_nspin1... done
17 Running init/dft_init_nspin2_dummy... done
18 Running init/dft_init_nspin2... done
19 Overwriting the variational orbitals with Kohn-Sham orbitals
20 Copying the spin-up variational orbitals over to the spin-down channel

For this calculation we can see that koopmans has run three PBE calculations. These initialize the density with the
PBE density. Indeed, from this point onwards in the calcuation the density will never change, because the KI functional
yields the same density as the base functional. (N.B. This is not true of KIPZ.)

These PBE calculations also have provided us with our variational orbitals – we can see that the calculation has selected
the PBE Kohn-Sham orbitals as the variational orbitals (because earlier we set "init_orbitals": "kohn-sham").

But why three PBE calculations? The reason for this is that the calculations we will perform later involve the addi-
tion/removal of a single electron, which means the density we need to generate here must correspond to a nspin = 2
calculation. However, we know ozone is a closed-shell molecule and simply performing a nspin = 2 PBE calculation
risks introducing spin contamination (i.e. falling into a local minimum where 𝑛↑(r) ̸= 𝑛↓(r)).

This sequence of three calculations is designed to avoid this; we first optimise the density constrained to be spin-
unpolarized, and only once that density has been minimised do we lift this restriction. This additional step can be
disabled by adding "fix_spin_contamination": false to the workflow block of ozone.json.

The input and output Quantum ESPRESSO files for this first step can all be found in the directory init/.

30 Chapter 8. Tutorials

koopmans, Release v1.0.1

Calculating the screening parameters

The second step in the calculation involves the calculation of the screening parameters:

22 Calculating screening parameters
23 ================================
24 Running calc_alpha/ki... done
25

26 Orbital 1
27 ---------
28 Running calc_alpha/orbital_1/dft_n-1... done
29

30 Orbital 2
31 ---------
32 Running calc_alpha/orbital_2/dft_n-1... done
33

34 Orbital 3
35 ---------
36 Running calc_alpha/orbital_3/dft_n-1... done
37

38 Orbital 4
39 ---------
40 Running calc_alpha/orbital_4/dft_n-1... done

etc. Here, we are calculating the screening parameters using the SCF method. For filled orbitals (orbitals 1-9 of ozone)
this requires an 𝑁 − 1-electron PBE calculation where we freeze the ith orbital, empty it, and allow the rest of the
density to relax. This yields 𝐸𝑖(𝑁 − 1). Meanwhile, 𝐸(𝑁), 𝜀𝛼𝑖 (1), and 𝜀0𝑖 (1) are all obtained during the trial KI
calculation calc_alpha/ki. Together with the value of our guess for the screening parameters (𝛼0

𝑖 = 0.6), this is
sufficient to update our guess for 𝛼𝑖 (see the theory section for details).

The procedure for empty orbitals is slightly different, as we can see when it comes to orbital 10:

61 Orbital 10
62 ----------
63 Running calc_alpha/orbital_10/pz_print... done
64 Running calc_alpha/orbital_10/dft_n+1_dummy... done
65 Running calc_alpha/orbital_10/dft_n+1... done
66

where now we must call Quantum ESPRESSO several times in order to obtain 𝐸𝑖(𝑁 + 1).

pz_print and dft_n+1_dummy
preliminary calculations that generate files required by the subsequent constrained DFT calculation

dft_n+1
a 𝑁 + 1-electron PBE calculation where we freeze the 10th orbital, fill it, and allow the rest of the density to
relax. This yields 𝐸𝑖(𝑁 + 1)

At the end of this section we can see a couple of tables:

67

68 alpha
69 1 2 3 4 ... 7 8 9 10
70 0 0.60000 0.600000 0.600000 0.600000 ... 0.600000 0.600000 0.600000 0.60000
71 1 0.65568 0.727565 0.783855 0.663858 ... 0.729884 0.741895 0.779259 0.71739
72

(continues on next page)

8.1. Tutorial 1: the ionization potential and electron affinity of ozone 31

koopmans, Release v1.0.1

(continued from previous page)

73 [2 rows x 10 columns]
74

75 Delta E_i - epsilon_i (eV)
76 1 2 3 ... 8 9 10
77 0 -0.477272 -0.920449 -1.124074 ... -0.888568 -1.05013 0.711214
78

79 [1 rows x 10 columns]
80

81 Screening parameters have been determined but are not necessarily converged

The first table lists the screening parameters 𝛼𝑖 that we obtained – we can see from row 0 we started with a guess of
𝛼𝑖 = 0.6 for every orbital i, and row 1 shows the alpha values.

The second table lists ∆𝐸𝑖 − 𝜀𝛼𝑖 . This is a measure of how well converged the alpha values are: if this value is close
to zero, then the alpha values are well-converged. Note that the values listed above correspond to our starting guess of
𝛼𝑖 = 0.6; this table does not show how well-converged the final alpha values are.

Note: In order to see how well-converged our new screening parameters are, try increasing alpha_numsteps in the
input file from 1 to 2. Can you make sense of the contents of the resulting tables?

The input and output Quantum ESPRESSO files for this step can be found in the directory calc_alpha/.

The final calculation

Having determined the screening parameters, the final KI calculation is now run:

83 Final KI calculation
84 ====================
85 Running final/ki_final... done
86

87 Workflow complete

The input and output Quantum ESPRESSO files for this step can be found in the directory final/.

8.1.4 Extracting the ionisation potential and electron affinity

Let’s now extract the KI ionisation potential and electron affinity for ozone from our calculation.

The ionisation potential (IP) corresponds to the negative of the energy of the HOMO (highest occupied molecular
orbital). If you open final/ki_final.cpo and search near the bottom of the file you will see a section something
like

...
HOMO Eigenvalue (eV)

-12.5199

LUMO Eigenvalue (eV)

-1.8218

(continues on next page)

32 Chapter 8. Tutorials

koopmans, Release v1.0.1

(continued from previous page)

Eigenvalues (eV), kp = 1 , spin = 1

-40.1869 -32.9130 -24.2288 -19.6841 -19.4902 -19.2696 -13.6037 -12.7618 -12.5199

Empty States Eigenvalues (eV), kp = 1 , spin = 1

-1.8218

Electronic Gap (eV) = 10.6981

Eigenvalues (eV), kp = 1 , spin = 2

-40.1869 -32.9130 -24.2288 -19.6841 -19.4902 -19.2696 -13.6037 -12.7618 -12.5199

Empty States Eigenvalues (eV), kp = 1 , spin = 2

-1.8218

Electronic Gap (eV) = 10.6981
...

Very clearly we can see the HOMO eigenvalue of -12.52 eV. Thus we have a KI IP of 12.52 eV. This compares extremely
well to the experimental value of ~ 12.5 eV, and is a marked improvement on the PBE result of 7.95 eV (which we can
obtain from the HOMO Eigenvalue in init/dft_init_nspin2.cpo).

Meanwhile, the electron affinity (EA) corresponds to the negative of the energy of the LUMO (lowest unoccupied
molecular orbital). From the same section in final/ki_final.cpo we can see that the KI EA is 1.82 eV (cf. ~ 2.1
eV experiment, 6.17 eV PBE)

Tip: If you prefer working within python, you need not write a script to parse the contents of final/ki_final.cpo
in order to extract the IP and EA. Instead, koopmans will have generated a python-readable file ozone.kwf containing
all of the important calculation data.

You can read these files like so:

from koopmans import io

Load the workflow object
wf = io.read('ozone.kwf')

Access the results from the very last calculation
results = wf.calculations[-1].results

Calculate the IP and EA
ip = -results['homo_energy']
ea = -results['lumo_energy']

Print
print(f' IP = {ip:.2f} eV')
print(f' EA = {ea:.2f} eV')

Indeed, it is also possible to run the workflow from within python (rather than calling koopmans from the command

8.1. Tutorial 1: the ionization potential and electron affinity of ozone 33

https://webbook.nist.gov/cgi/cbook.cgi?ID=C10028156&Mask=20#Ion-Energetics

koopmans, Release v1.0.1

line)

from koopmans.io import read

wf = read('ozone.json')
wf.run()

in which case you have immediate access to the workflow object wf rather than having to load in the .kwf file.

8.2 Tutorial 2: the band structure of bulk silicon (calculated via a su-
percell)

In this tutorial, we will calculate the KI bandstructure of bulk silicon. The input file used for this calculation can be
downloaded here.

8.2.1 Wannierization

While this calculation will bear a lot of similarity to the previous tutorial, there are several differences between perform-
ing a Koopmans calculation on a bulk system vs. a molecule. One major difference is that we use Wannier functions
as our variational orbitals.

What are Wannier functions?

Most electronic-structure codes try to calculate the Bloch states 𝜓𝑛k of periodic systems (where 𝑛 is the band index and
k the crystal momentum). However, other representations are equally valid. One such representation is the Wannier
function (WF) basis. In contrast to the very delocalised Bloch states, WFs are spatially localised and as such represent
a very convenient basis to work with. In our case, the fact that they are localised means that they are suitable for use as
variational orbitals.

Wannier functions 𝑤𝑛R(r) can be written in terms of a transformation of the Bloch states:

𝑤𝑛R(r) =
𝑉

(2𝜋)3

∫︁
BZ

[︃∑︁
𝑚

𝑈 (k)
𝑚𝑛𝜓𝑚k(r)

]︃
𝑒−𝑖k·Rdk(8.1)

where our Wannier functions belong to a particular lattice site R, 𝑉 is the unit cell volume, the integral is over the
Brillouin zone (BZ), and𝑈 (k)

𝑚𝑛 defines a unitary rotation that mixes the Bloch states with crystal momentumk. Crucially,
this matrix 𝑈 (k)

𝑚𝑛 is not uniquely defined — indeed, it represents a freedom of the transformation that we can exploit.

We choose our 𝑈 (k)
𝑚𝑛 that gives rise to WFs that are “maximially localised”. We quantify the spread Ω of a WF as

Ω =
∑︁
𝑛

[︁
⟨𝑤𝑛0(r)| 𝑟2 |𝑤𝑛0(r)⟩ − |⟨𝑤𝑛0(r)| r |𝑤𝑛0(r)⟩|2

]︁
(8.2)

34 Chapter 8. Tutorials

koopmans, Release v1.0.1

The Wannier functions that minimise this spread are called maximally localised Wannier functions (MLWFs). For
more details, see Ref. [20].

How do I calculate Wannier functions?

MLWFs can be calculated with Wannier90, an open-source code that is distributed with Quantum ESPRESSO. Per-
forming a Wannierization with Wannier90 requires a series of calculations to be performed with pw.x, wannier90.x,
and pw2wannier90.x. This workflow is automated within koopmans, as we will see in this tutorial.

Note: This tutorial will not discuss in detail how perform a Wannierization with Wannier90. The Wannier90 website
contains lots of excellent tutorials.

One important distinction to make for Koopmans calculations — as opposed to many of the Wannier90 tutorials — is
that we need to separately Wannierize the occupied and empty manifolds.

Let’s now inspect this tutorial’s input file. At the top you will see that

2 "workflow": {
3 "task": "wannierize",
4 "functional": "ki",

which tells the code to perform a standalone Wannierization calculation. Meanwhile, near the bottom of the file there
are some Wannier90-specific parameters provided in the w90 block

38 "w90": {
39 "bands_plot": true,
40 "projections": [[{"fsite": [0.25, 0.25, 0.25], "ang_mtm": "sp3"}],
41 [{"fsite": [0.25, 0.25, 0.25], "ang_mtm": "sp3"}]],
42 "dis_froz_max": 10.6,
43 "dis_win_max": 16.9
44 },

The w90 block format is explained more fully here.

We run this calculation as per usual:

koopmans si.json | tee si_wannierize.out

After the usual header, you should see something like the following:

Wannierization
==============
Running wannier/scf... done
Running wannier/nscf... done
Running wannier/block_1/wann_preproc... done
Running wannier/block_1/pw2wan... done
Running wannier/block_1/wann... done
Running wannier/block_2/wann_preproc... done
Running wannier/block_2/pw2wan... done
Running wannier/block_2/wann... done
Running wannier/bands... done
Running pdos/projwfc... done

(continues on next page)

8.2. Tutorial 2: the band structure of bulk silicon (calculated via a supercell) 35

http://www.wannier.org/
http://www.wannier.org/support/

koopmans, Release v1.0.1

(continued from previous page)

Workflow complete

These various calculations that are required to obtain the MLWFs of bulk silicon. You can inspect the and various
output files will have been generated in a new wannier/ directory.

scf
a pw.x self-consistent DFT calculation performed with no empty bands. This obtains the ground-state electronic
density

nscf
a pw.x non-self-consistent DFT calculation that determines the Hamiltonian, now including some empty bands

block_1/wann_preproc
a preprocessing wannier90.x calculation that generates some files required by pw2wannier90.x

block_1/pw2wan
a pw2wannier90.x calculation that extracts from the eariler pw.x calculations several key quantities required
for generating the Wannier orbitals for the occupied manifold: namely, the overlap matrix of the cell-periodic
part of the Block states (this is the wann.mmn file) and the projection of the Bloch states onto some trial localised
orbitals (wann.amn)

block_1/wann
the wannier90.x calculation that obtains the MLWFs for the occupied manifold

block_2/. . .
the analogous calculations as those in occ/, but for the empty manifold

bands
a pw.x calculation that calculates the band structure of silicon explicitly, used for verification of the Wannieriza-
tion (see the next section)

pdos/projwfc
a projwfc.x calculation that calculates the projected density of states, also used for checking the Wannierization

The main output files of interest in wannier/ are files block_1/wann.wout and block_2/wann.wout, which contain
the output of wannier90.x for the Wannierization of the occupied and empty manifolds. If you inspect either of these
files you will be able to see a lot of starting information, and then under a heading like

------------------------------- WANNIERISE ---------------------------------
+--+<-- CONV
| Iter Delta Spread RMS Gradient Spread (Ang^2) Time |<-- CONV
+--+<-- CONV

you will then see a series of steps where you can see the Wannier functions being optimised and the spread (labelled
SPRD) decreasing from one step to the next. Scrolling down further you should see a statement that the Wannierization
procedure has converged, alongside with a summary of the final state of the WFs.

36 Chapter 8. Tutorials

koopmans, Release v1.0.1

How do I know if the Wannier functions I have calculated are “good”?

Performing a Wannierization calculation is not a straightforward procedure, and requires the tweaking of the Wannier90
input parameters in order to obtain a “good” set of Wannier functions.

One check is to see if an interpolated bandstructure generated by the MLWFs resembles an explicitly-calculated
band structure. (For an explanation of how one can use Wannier functions to interpolate band structures, re-
fer to Ref. [20].) You might have noticed that when we ran koopmans earlier it also generated a file called
si_wannierize_bandstructure.png. It should look something like this:

Fig. 1: Comparing the interpolated and explicitly-calculated band structures of bulk silicon

Clearly, we can see that the interpolation is no good! (The interpolated band structure ought to lie on top of the explicitly
calculated band structure.) The reason for this is that the Brillouin zone is undersampled by our 2× 2× 2 𝑘-point grid.
Try increasing the size of the k-point grid and see if the interpolated bandstructure improves.

Tip: Trying different grid sizes can be very easily automated within python. Here is a simple script that will run the
Wannierization for three different grid sizes:

from koopmans.io import read
from koopmans.utils import chdir

for grid_size in [2, 4, 8]:

Read in the input file
wf = read('si.json')

Modify the kgrid
wf.kpoints.grid = [grid_size, grid_size, grid_size]

Run the workflow in a subdirectory
with chdir('{0}x{0}x{0}'.format(grid_size)):

wf.run()

8.2. Tutorial 2: the band structure of bulk silicon (calculated via a supercell) 37

koopmans, Release v1.0.1

Tip: You may also notice a file called si_wannierize_bandstructure.fig.pkl. This is a version of the figure
that you can load in python and modify as you see fit. e.g. here is a script that changes the y-axis limits and label:

import pickle

import matplotlib.pyplot as plt

with open('2x2x2/si_wannierize_bandstructure.fig.pkl', 'rb') as fd:
pickle.load(fd)

ax = plt.gca()
ax.set_ylim([-5, 5])
ax.set_ylabel(r'ω (eV)')
plt.show() uncomment to view the figure interactively
plt.savefig('2x2x2/si_wannierize_bandstructure_rescaled.png')

8.2.2 The KI calculation

Having obtained a Wannierization of silicon that we are happy with, we can proceed with the KI calculation. In order
to do this simply change the task keyword in the input file from wannierize to singlepoint.

Tip: Although we just discovered that a 2× 2× 2 𝑘-point grid was inadequate for producing good Wannier functions,
this next calculation is a lot more computationally intensive and will take a long time on most desktop computers. We
therefore suggest that for the purposes of this tutorial you switch back to the small 𝑘-point grid. (But for any proper
calculations, always use high-quality Wannier functions!)

Initialization

If you run this new input the output will be remarkably similar to that from the previous tutorial, with a couple of
exceptions. At the start of the workflow you will see there is a Wannierization procedure, much like we had earlier
when we running with the wannierize task:

20 Wannierization
21 ==============
22 Running wannier/scf... done
23 Running wannier/nscf... done
24 Running wannier/block_1/wann_preproc... done
25 Running wannier/block_1/pw2wan... done
26 Running wannier/block_1/wann... done
27 Running wannier/block_2/wann_preproc... done
28 Running wannier/block_2/pw2wan... done
29 Running wannier/block_2/wann... done

which replaces the previous series of semi-local and PZ calculations that we used to initialize the variational orbitals
for a molecule.

There is then an new “folding to supercell” subsection:

38 Chapter 8. Tutorials

koopmans, Release v1.0.1

32 Folding to supercell
33 --------------------
34 Running block_1/w2kcp... done
35 Running block_2/w2kcp... done

In order to understand what these calculations are doing, we must think ahead to the next step in our calculation, where
we will calculate the screening parameters using the SCF method. These calculations, where we remove/add an electron
from/to the system, require us to work in a supercell. This means that we must transform the 𝑘-dependent primitive cell
results from previous calculations into equivalent Γ-only supercell quantities that can be read by kcp. This is precisely
what the above wan2odd calculations do.

Calculating the screening parameters

Having transformed into a supercell, the calculation of the screening parameters proceeds as usual. The one difference
to tutorial 1 that you might notice at this step is that we are skipping the calculation of screening parameters for some
of the orbitals:

42 Calculating screening parameters
43 ================================
44 Running calc_alpha/ki... done
45

46 Orbitals 1-31
47 -------------
48 Skipping; will use the screening parameter of an equivalent orbital
49

50 Orbital 32
51 ----------

The code is doing this because of what we provided for the orbital_groups in the input file:

9 "alpha_guess": 0.077,
10 "orbital_groups": [0, 0, 0, 0, 1, 1, 1, 1],
11 "pseudo_library": "pseudo_dojo_standard",

which tells the code to use the same parameter for orbitals belonging to the same group. In this instance we are
calculating a single screening parameter for all four filled orbitals, and a single screening parameter for the empty
orbitals.

The final calculation and postprocessing

The final difference for the solids calculation is that there is an additional preprocessing step at the very end:

89 Postprocessing
90 ===============
91

92 Wannierization
93 ==============
94 Running wannier/scf... done
95 Running wannier/nscf... done
96 Running wannier/block_1/wann_preproc... done
97 Running wannier/block_1/pw2wan... done
98 Running wannier/block_1/wann... done

(continues on next page)

8.2. Tutorial 2: the band structure of bulk silicon (calculated via a supercell) 39

koopmans, Release v1.0.1

(continued from previous page)

99 Running wannier/block_2/wann_preproc... done
100 Running wannier/block_2/pw2wan... done
101 Running wannier/block_2/wann... done
102 Running wannier/bands... done
103 Running pdos/projwfc... done
104 Running occ/ki... done
105 Running emp/ki... done
106

107 Workflow complete

Here, we transform back our results from the supercell sampled at Γ to the primitive cell with 𝑘-space sampling. This
allows us to obtain a bandstructure. The extra Wannierization step that is being performed is to assist the interpolation
of the band structure in the primitive cell, and has been performed because in the input file we specified

45 "ui": {
46 "smooth_int_factor": 4
47 }

For more details on the “unfold and interpolate” procedure see here and Ref. [11].

8.2.3 Extracting the KI bandstructure and the bandgap of Si

The bandstructure can be found in postproc/bands_interpolated.dat as a raw data file, but there is a more
flexible way for plotting the final bandstructure using the python machinery of koopmans:

from koopmans.io import read

Load the workflow object
wf = read('si.kwf')

Access the band structure from the very last calculation
results = wf.calculations[-1].results
bs = results['band structure']

Print the band strucutre to file
bs.plot(filename='si_bandstructure.png')

Extract the band gap
n_occ = wf.number_of_electrons() // 2
gap = bs.energies[:, :, n_occ:].min() - bs.energies[:, :, :n_occ].max()
print(f'KI band gap = {gap:.2f} eV')

Running this script will generate a plot of the bandstructure (si_bandstructure.png) as well as printing out the band
gap. You should get a result around 1.35 eV. Compare this to the PBE result of 0.68 eV and the experimental value of
1.22 eV. If we were more careful with the Wannier function generation, our result would be even closer (indeed in Ref.
[24] the KI band gap was found to be 1.22 eV!)

40 Chapter 8. Tutorials

koopmans, Release v1.0.1

8.3 Tutorial 3: the band structure of ZnO (calculated with explicit k-
points)

In this tutorial we will calculate the band structure of bulk zinc oxide using the k-space formulation of Koopmans. The
input file for this tutorial can be downloaded here.

8.3.1 Calculating the Koopmans band structure

The input file

First, let us inspect the input file:

1 {
2 "workflow": {
3 "task": "singlepoint",
4 "functional": "ki",
5 "base_functional": "lda",
6 "method": "dfpt",
7 "init_orbitals": "mlwfs",
8 "calculate_alpha" : false,
9 "alpha_guess": [[0.3580, 0.3641, 0.3640, 0.3641, 0.3571, 0.3577, 0.3577, 0.3573,␣

→˓0.3573, 0.3580, 0.3641, 0.3640, 0.3641, 0.3571, 0.3577, 0.3577, 0.3573, 0.3573, 0.2158,
→˓ 0.2323, 0.2344, 0.2343, 0.2158, 0.2323, 0.2344, 0.2343, 0.2231, 0.2231]],

Here we tell the code to calculate the KI bandstructure using the DFPT primitive cell approach. We will not actu-
ally calculate the screening parameters in this tutorial (because this calculation takes a bit of time) so we have set
calculate_alpha to False and we have provided some pre-computed screening parameters in the alpha_guess
field.

The rest of the file contains the atomic coordinates, k-point configuration, and calculator parameters (including the
Wannier projectors, which we will discuss later).

Running the calculation

Running koopmans zno.json should produce an output with several sections: after the header there is the Wannier-
ization

16 Wannierization
17 ==============
18 Running wannier/scf... done
19 Running wannier/nscf... done
20 Running wannier/block_1/wann_preproc... done
21 Running wannier/block_1/pw2wan... done
22 Running wannier/block_1/wann... done
23 Running wannier/block_2/wann_preproc... done
24 Running wannier/block_2/pw2wan... done
25 Running wannier/block_2/wann... done
26 Running wannier/block_3/wann_preproc... done
27 Running wannier/block_3/pw2wan... done
28 Running wannier/block_3/wann... done
29 Running wannier/block_4/wann_preproc... done

(continues on next page)

8.3. Tutorial 3: the band structure of ZnO (calculated with explicit k-points) 41

koopmans, Release v1.0.1

(continued from previous page)

30 Running wannier/block_4/pw2wan... done
31 Running wannier/block_4/wann... done
32 Running wannier/block_5/wann_preproc... done
33 Running wannier/block_5/pw2wan... done
34 Running wannier/block_5/wann... done
35 Running wannier/bands... done
36 Running pdos/projwfc... done

which is very similar to what we saw for silicon, except now we have several blocks for the occupied manifold (discussed
below). Then we have

37 Conversion to Koopmans format
38 -----------------------------
39 Running wannier/kc... done

where the Wannier90 files are converted into a format readable by the kcw.x code.

If we had instructed the code to calculate the alpha parameters, this would be followed by an extra block where these
are calculated. But since we have already provided these, the workflow progresses immediately to the final step

42 Construction of the Hamiltonian
43 ===============================
44 Running hamiltonian/kc... done
45

46 Workflow complete

where the Koopmans Hamiltonian is constructed, and the band structure computed.

Plotting the results

Running the workflow will have produced several directories containing various input and output Quantum ESPRESSO
files. It will also have generated png band structure plots, including this one of the Koopmans band structure:

However, suppose we want to make a nicer, more comprehensive plot comparing the LDA and Koopmans band
structures. To achieve this, we will load all of the information from the zno.kwf file. This will provide us with a
SinglepointWorkflow object which contains all of the calculations and their associated results. For example, we
can access the calculations corresponding to the Koopmans and LDA band structures as follows:

from koopmans.io import read

Load the workflow
wf = read('zno.kwf')

The Koopmans bands were generated by the very last calculation in the workflow
koopmans_calc = wf.calculations[-1]

The LDA bands were generated by a pw.x calculation with the setting "calculation =␣
→˓bands"
[lda_calc] = [c for c in wf.calculations if c.parameters.get('calculation', None) ==
→˓'bands']

and then the band structures are in the results dictionary of these calculators:

42 Chapter 8. Tutorials

koopmans, Release v1.0.1

Fig. 2: The autogenerated band structure plot for ZnO

8.3. Tutorial 3: the band structure of ZnO (calculated with explicit k-points) 43

koopmans, Release v1.0.1

Fetch the Koopmans bands, and shift them so that the valence band maximum is zero
koopmans_bs = koopmans_calc.results['band structure']
koopmans_bs_shifted = koopmans_bs.subtract_reference()

Fetch the LDA bands, and shift them by the same amount
lda_bs = lda_calc.results['band structure']
lda_bs_shifted = lda_bs.subtract_reference(koopmans_bs.reference)

These band structures are BandStructure objects (documented here). Among other things, this class implements a
plot function that allows us to plot them on the same set of axes:

Plot the two band structures
ax = lda_bs_shifted.plot(label='LDA', spin=0, color='tab:blue', ls='--')
ax = koopmans_bs_shifted.plot(ax=ax, label='K@LDA', color='tab:green')

With a few further aesthetic tweaks (download the full script here) we obtain the following plot:

Fig. 3: Pretty band structure plot comparing the LDA and Koopmans band structures of ZnO

This script has also labelled the band gap for us, which is 3.55 eV. This is pretty close to the 3.62 eV result from Ref.
[5] (see the below figure). The slight discrepancy comes from the fact that this tutorial has used coarser parameters to
make the calculations run quickly.

44 Chapter 8. Tutorials

https://wiki.fysik.dtu.dk/ase/ase/dft/kpoints.html?highlight=bandstructure#ase.spectrum.band_structure.BandStructure

koopmans, Release v1.0.1

Fig. 4: The band structure of ZnO from Colonna et al. [5]

8.3.2 Bonus material: understanding the Wannier projections

The first step to any calculation on a periodic system is to obtain a good set of Wannier functions. These depend strongly
on our choice of the projections, which (for the moment) we must specify manually.

In the above calculation we gave you some Wannier projections to use:

47 "w90": {
48 "projections": [
49 [{"site": "Zn", "ang_mtm": "l=0"}],
50 [{"site": "Zn", "ang_mtm": "l=1"}],
51 [{"site": "O", "ang_mtm": "l=0"}],
52 [{"site": "Zn", "ang_mtm": "l=2"},
53 {"site": "O", "ang_mtm": "l=1"}],
54 [{"site": "Zn", "ang_mtm": "l=0"}]
55],

But what if you need to come up with your own Wannier projections? In this bonus section we will explain how to
work out Wannier projections for yourself.

8.3. Tutorial 3: the band structure of ZnO (calculated with explicit k-points) 45

koopmans, Release v1.0.1

Configuring the Wannierization

To determine a good choice for the Wannier projections, we can first calculate a projected density of states (pDOS).
Take your input file and change the task from singlepoint to dft_bands, and then run koopmans zno.json. This
will run the DFT bandstructure workflow, which will produce a directory called dft_bands that contains various files,
including a png of the bandstructure and pDOS. If you look at this file, you will see that the DFT band structure of
ZnO consists of several sets of bands, each well-separated in energy space. As the pDOS shows us, the filled bands
correspond to zinc 3s, zinc 3p, oxygen 2s, and then zinc 3d hybridized with oxygen 2p. Meanwhile, the lowest empty
bands correspond to Zn 4s bands.

A sensible choice for the occupied projectors is therefore

"w90": {
"projections": [

[{"site": "Zn", "ang_mtm": "l=0"}],
[{"site": "Zn", "ang_mtm": "l=1"}],
[{"site": "O", "ang_mtm": "l=0"}],
[{"site": "Zn", "ang_mtm": "l=2"},
{"site": "O", "ang_mtm": "l=1"}]

]

Here we will use of the block-Wannierization functionality to wannierize each block of bands separately. If we didn’t
do this, then the Wannierization procedure might mix orbitals from different blocks of bands (the algorithm minimizes
the spatial spread without regard to the energies of the orbitals it is mixing). This sort of mixing between orbitals of
very different energies is generally detrimental to the Wannierization and the resulting Koopmans band structure.

For the empty bands we want to obtain two bands corresponding to the Zn 4s orbitals. These must be disentangled
from the rest of the empty bands, which is achieved via the following Wannier90 keywords.

dis_win_max
defines the upper bound of the disentanglement energy window. This window should entirely encompass the
lowest two bands corresponding to our Zn 4s projectors. Consequently, it will inevitably include some weights
from higher bands

dis_froz_max
defines the upper bound of the frozen energy window. This window should be as large as possible while excluding
any bands that do not correspond to our Zn 4s projectors

To determine good values for these keywords, we clearly need a more zoomed-in band structure than the default. We
can obtain this via the *.fig.pkl files that koopmans generates. Here is a short code snippet that replots the band
structure over a narrower energy range

import pickle

import matplotlib.pyplot as plt

Use the python library "pickle" to load the *.fig.pkl file
fig = pickle.load(open('dft_bands/zno_dftbands_bandstructure.fig.pkl', 'rb'))

Rescale the y axes
fig.axes[0].set_ylim([-5, 15])

Show/save the figure (uncomment as desired)
plt.savefig('zno_dftbands_bandstructure_rescaled.png')
plt.show()

46 Chapter 8. Tutorials

koopmans, Release v1.0.1

Based on this figure, choose values for these two keywords and add them to your input file in the w90 block. Append
the Zn 4s projections to the list of projections, too.

Note: dis_froz_max and dis_win_max should not be provided relative to the valence band edge. Meanwhile the
band structure plots have set the valence band edge to zero. Make sure to account for this by shifting the values of
dis_froz_max and dis_win_max by 9.3 eV (the valence band edge energy; you can get this value yourself via grep
'highest occupied level' dft_bands/scf.pwo)

Note: When disentanglement keywords such as dis_win_max are provided, they will only be used during the Wan-
nierization of the final block of projections

Testing the Wannierization

To test your wannierization, you can now switch to the wannierize task and once again run koopmans zno.json.
This will generate a wannier directory as well as a band structure plot, this time with the interpolated band structure
plotted on top of the explicitly evaluated band structure. Ideally, the interpolated band structure should lie on top of the
explicit one. Play around with the values of dis_froz_max and dis_win_max until you are happy with the resulting
band structure.

Hint: Instead of using the *.fig.pkl file to obtain a zoomed-in band structure, add a plotting block to your json
input file to manually set the y-limits:

"plotting": {
"Emin": -5.0
"Emax": 15

}

8.4 Tutorial 4: running convergence tests

While koopmans is a package primarily oriented towards performing Koopmans functional calculations, it does have a
couple of other useful functionalities. Among these functionalities is the ability to perform arbitrary covnergence tests.

8.4.1 A simple convergence test

In this tutorial, we will make use of its convergence task to determine how large a cell size and energy cutoff is
required to converge the PBE energy of the highest occupied molecular orbital (HOMO) of a water molecule. This
workflow was chosen for its simplicity; it is possible to run convergence tests on any workflow implemented in the
koopmans package.

8.4. Tutorial 4: running convergence tests 47

koopmans, Release v1.0.1

The input file

In order to run this calculation, in the workflow block we need to set the converge parameter to true:

{
"workflow": {

"functional": "dft",
"task": "singlepoint",
"from_scratch": true,
"converge": true,
"fix_spin_contamination": false,
"pseudo_library": "sg15_v1.0"

},

and then provide the convergence information in the convergence block:

"convergence": {
"observable": "homo energy",
"threshold": "0.01 eV",
"variables": [

"ecutwfc",
"celldm1"

]
},

These settings state that we are going to converge the HOMO energy to within 0.01 eV, with respect to both the energy
cutoff ecutwfc and the cell size. The full input file can be found here.

The output file

When you run the calculation, you should see something like this after the header:

ecutwfc = 20.0, celldm1 = 11.3

Running ./dft... done

ecutwfc = 20.0, celldm1 = 12.3

Running ./dft... done

ecutwfc = 20.0, celldm1 = 13.3

Running ./dft... done

ecutwfc = 30.0, celldm1 = 11.3

Running ./dft... done

ecutwfc = 30.0, celldm1 = 12.3

Running ./dft... done

Here, the code is attempting to use progressively larger energy cutoffs and cell sizes. It will ultimately arrive at a
converged solution, with a ecutwfc of 50.0 Ha and a cell slightly larger than that provided in the .json input file.

48 Chapter 8. Tutorials

koopmans, Release v1.0.1

Plotting

The individual Quantum ESPRESSO calculations reside in nested subdirectories. If you plot the HOMO energies from
each of these, you should get something like this:

Fig. 5: Plot of the HOMO energy of water with respect to the energy cutoff and cell size (generated using this script)

We can see that indeed the calculation with ecutwfc = 50.0 and celldm(1) = 13.3 is the one where the energy
of the HOMO goes within (and stays within) 0.01 eV of the most accurate calculation.

8.4.2 A custom convergence test

In the previous example, we performed a convergence test with respect to ecutwfc and celldm1. A full list of sup-
ported convergence variables can be found here. You will see that only a couple of variables are implemented by
default. But don’t let that limit you! It is possible to perform a convergence test on arbitrary keywords using factories.

First, try taking the input file from the first part of the tutorial, and switch the pseudopotential library to
pseudo_dojo_standard. What do you notice?

Hopefully, the first thing you will see is that there are now some warnings about the small box parameters nrb like this,

UserWarning: Small box parameters "nrb" not provided in input: these will be␣
→˓automatically set to safe default values. These values can probably be decreased, but␣

(continues on next page)

8.4. Tutorial 4: running convergence tests 49

koopmans, Release v1.0.1

(continued from previous page)

→˓this would require convergence tests.
Estimated real mesh dimension (nr1, nr2, nr3) = ...
Small box mesh dimension (nr1b, nr2b, nr3b) = ...

These parameters are associated with the way Quantum ESPRESSO handles non-local core corrections in pseudopo-
tentials, and corrections are present in the new set of pseudopotentials but absent in the SG15 pseudopotentials.

So, let’s perform a convergence test! The nrb parameters are not directly implemented as a convergence vari-
able in koopmans, but we can use a factory to perform a convergence test on them, by making use of the
ConvergenceVariable and ConvergenceWorkflowfactory classes.

'''
A simple script that converges the HOMO energy of a water molecule with respect to nr1b,␣
→˓nr2b, and nr3b

'''

from ase.build import molecule
from koopmans import workflows

Use ASE to construct a water molecule
atoms = molecule('H2O', vacuum=5.0)

Create a subworkflow which calculates (among other things) the PBE HOMO energy of water
subworkflow = workflows.DFTCPWorkflow(atoms=atoms, ecutwfc=30.0, base_functional='pbe',

pseudo_library='pseudo_dojo_standard',
calculator_parameters={'kcp': {'nr1b': 6, 'nr2b':␣

→˓6, 'nr3b': 6}})

koopmans doesn't implement convergence with respect to nrb, so we need to define a␣
→˓custom
ConvergenceVariable. To do so, we must first...
... define a function that extracts nr1-3b from a workflow
def get_nrb(workflow):

return [workflows.get_calculator_parameter(workflow, f'nr{i}b') for i in [1, 2, 3]]

... define a function that sets nr1-3b
def set_nrb(workflow, value):

workflows.set_calculator_parameter(workflow, 'nr1b', value[0])
workflows.set_calculator_parameter(workflow, 'nr2b', value[1])
workflows.set_calculator_parameter(workflow, 'nr3b', value[2])

nrb_variable = workflows.ConvergenceVariable(name='nrb',
increment=[2, 2, 2],
get_value=get_nrb,
set_value=set_nrb)

Create the convergence workflow using the convergence factory. Because koopmans knows␣
→˓how to
converge with respect to ecutwfc, we don't need to implement a custom␣
→˓ConvergenceVariable for it
and instead can just tell it the variable name
workflow = workflows.ConvergenceWorkflowFactory(subworkflow,

observable='total energy',
(continues on next page)

50 Chapter 8. Tutorials

koopmans, Release v1.0.1

(continued from previous page)

threshold=1e-3,
variables=[nrb_variable])

Run the workflow
workflow.run()

Running this script will perform a convergence test with respect to nrb 1-3.

Warning: This tutorial performs convergence tests in a slightly incorrect way, To see this, add the keyword length
= 10 to the ConvergenceVarialbe in the above script. How is the behaviour different? Which behaviour is
correct? Why?

8.5 Tutorial 5: using machine learning to predict the screening pa-
rameters of water molecules

In this tutorial, we will train a machine-learning model to predict the screening parameters of water molecules directly
from their orbital densities. To generate a trajectory with 20 different atomic configurations, we run a python script
that applies random noise to the atomic positions of a water molecule. The resulting atomic positions are saved in a
xyz file and are visualized below

Our goal in this tutorial is to perform Koopmans calculations on each of these 20 snapshots using a machine learning
model to predict the screening parameters instead of calculating them ab initio.

8.5.1 Running a machine learning workflow

To predict the screening parameters with the machine learning model we must first train the model. In the following
we will use the first five snapshots for training and then use the trained machine learning model to predict the screening
parameters for the remaining 15 snapshots.

The input file for the machine learning workflow

The input file for performing this task can be downloaded here.

First, we have to specify that we want to perform Koopmans calculations on a whole trajectory of snapshots by setting
the "task" keyword in the "workflow" block:

24 "workflow": {
25 "task": "trajectory",
26 "functional": "ki",

For this task, we don’t provide the "atomic_positions" directly to the input file since we don’t want to perform a
Koopmans calculation on a single snapshot but on many snapshots. Instead, we provide an xyz file containing all the
atomic positions of each snapshot that we would like to simulate

21 "atoms": {
22 "atomic_positions": {

(continues on next page)

8.5. Tutorial 5: using machine learning to predict the screening parameters of water molecules 51

koopmans, Release v1.0.1

(continued from previous page)

23 "units": "angstrom",
24 "snapshots": "snapshots.xyz"

Finally, we have to provide a ml block with keywords specific to the machine learning model

13 "ml": {
14 "use_ml": true,
15 "n_max": 6,
16 "l_max": 6,
17 "r_min": 1.0,
18 "r_max": 4.0,
19 "number_of_training_snapshots": 5
20 },

To predict the screening parameters from the orbital densities, we have to translate the orbital densities into input vectors
for the machine learning model. To do so, we decompose the orbital densities into radial basis functions 𝑔𝑛𝑙(𝑟) and
angular basis functions 𝑌𝑚𝑙(𝜃, 𝜑). This decomposition has the following four hyperparameters that we provided in the
input file:

• 𝑛𝑚𝑎𝑥 determines the number of radial basis functions

• 𝑙𝑚𝑎𝑥 determines the number of angular basis functions

• 𝑟𝑚𝑖𝑛 determines the smallest cutoff radius for the radial basis functions

• 𝑟𝑚𝑎𝑥 determines the largest cutoff radius for the radial basis functions

In anticipation that the machine learning model will be most useful in extended systems (liquids or solids), we apply
periodic boundary conditions and use maximally localized Wannier functions as our variational orbitals (despite the
fact that our toy water model is not, in fact, a periodic system).

The output file for the machine learning workflow

Running this calculation, the output will show that we compute the screening parameters of the first five snapshots ab
initio and add the results to our training data

49 Orbital 1
50 ---------
51 Running calc_alpha/orbital_1/dft_n-1... done
52

53 predicted screening parameter: 1.00000
54 calculated screening parameter: 0.57472
55 absolute error: 0.42528
56

57 Adding this orbital to the training data

Then we use the trained model to predict the screening parameters of the remaining snapshots

619 Orbital 1
620 ---------
621 Predicting the screening parameter with the ML model

Using the script plot_5a.py we can plot predicted ionization potentials of the water molecule across the last 10
snapshots. Of course, they don’t necessarily correspond to anything physical because these configurations have been

52 Chapter 8. Tutorials

koopmans, Release v1.0.1

randomly generated. But in real applications the snapshots will correspond to something physical and the resulting
ionization potentials will be meaningful.

Here there is no way of telling if the model is correct – it has provided us with some screening parameters and we have
to trust it. If we want to check if a machine learning model is working properly what we need to do is a convergence
analysis with respect to the number of training data. This will be the goal of the following section.

8.5.2 Running a convergence analysis

The input file for the convergence analysis

The corresponding input file differs from the previous input file only in the "task" keyword

1 "workflow": {
2 "task": "convergence_ml",
3 "functional": "ki",

and the "number_of_training_snapshots"

1 "ml": {
2 "use_ml": true,
3 "n_max": 6,
4 "l_max": 6,
5 "r_min": 1.0,
6 "r_max": 4.0,
7 "number_of_training_snapshots": 10,
8 "quantities_of_interest": ["alphas", "evs"]
9 },

10 "atoms": {
11 "atomic_positions": {
12 "units": "angstrom",

8.5. Tutorial 5: using machine learning to predict the screening parameters of water molecules 53

koopmans, Release v1.0.1

For the convergence_ml task, setting "number_of_training_snapshots": 10 means that we will perform the
convergence analysis with respect to 1, 2, . . . , and 10 training snapshots and use the remaining snapshots (in this case
snapshots 11 to 20) for testing.

The "quantities_of_interest" is the list of parameters with respect to which we would like to perform the conver-
gence analysis. In addition to performing it only with respect to the screening parameters "alphas", we also perform
it with respect to the eigenvalues ("evs"). The latter requires an additional final calculation for each snapshot
and therefore takes slightly longer to run.

The output file for the convergence analysis

You should see that the workflow first computes the screening parameters ab-initio for the last 10 snapshots.

18 Obtaining ab-initio results for the last 10 snapshot(s)
19 ===

Next, snapshot 1 is added to the training data.

732 Adding snapshot 1 to the training data
733 ======================================

After having trained the machine learning model on the orbitals of the first snapshot we use the trained model to predict
the screening parameters of the last 10 snapshots and compare our results to the results from the ab initio computation.

849 Testing on the last 10 snapshot(s)
850 ==================================

Next, we add snapshot 2 to the training data.

1552 Adding snapshot 2 to the training data
1553 ======================================

Our model is now trained on the orbitals of 2 snapshots. We use this model again to predict the screening parameters
of the last 10 snapshots and compare the results to the ab initio calculation. We repeat this procedure until we have
added all 10 snapshots to the training data. Then we can have a look at the convergence of the mean absolute error of
the predicted screening parameters:

and the convergence of the mean absolute error of the predicted orbital energies:

(You can find these plots in the convergence_analysis/final_results/ subdirectory.) We can see that we con-
verged to a reasonable accuracy after about 5 training snapshots (which corresponds to 20 occupied and 10 empty
orbitals).

We can now also check (plot_5b.py) that the predicted ionization potentials match with the ionization potentials
obtained from the ab-initio computation of the screening parameters:

54 Chapter 8. Tutorials

koopmans, Release v1.0.1

8.5. Tutorial 5: using machine learning to predict the screening parameters of water molecules 55

koopmans, Release v1.0.1

56 Chapter 8. Tutorials

CHAPTER

NINE

SUPPORT AND FEEDBACK

If you have any questions about running koopmans, post it to our mailing list

If you have a bug to report, please open an issue on GitHub

57

https://groups.google.com/g/koopmans-users
https://github.com/epfl-theos/koopmans/issues

koopmans, Release v1.0.1

58 Chapter 9. Support and feedback

CHAPTER

TEN

REFERENCES

10.1 Selected references

In any publication arising from the use of Koopmans functionals and/or the koopmans code, please cite

• E. B. Linscott, N. Colonna, R. De Gennaro, N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. Koop-
mans: An Open-Source Package for Accurately and Efficiently Predicting Spectral Properties with Koopmans
Functionals. J. Chem. Theory Comput., August 2023. doi:10.1021/acs.jctc.3c00652.

Other relevant references include

Papers introducing Koopmans functionals

• I. Dabo, M. Cococcioni, and N. Marzari. Non-Koopmans Corrections in Density-functional Theory: Self-
interaction Revisited. January 2009. arXiv:0901.2637.

• I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni. Koopmans' condition for density-
functional theory. Phys. Rev. B, 82(11):115121, September 2010. doi:10.1103/PhysRevB.82.115121.

• G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari. Koopmans-compliant functionals
and their performance against reference molecular data. Phys. Rev. B, 90(7):075135, August 2014.
doi:10.1103/PhysRevB.90.075135.

• G. Borghi, C. H. Park, N. L. Nguyen, A. Ferretti, and N. Marzari. Variational minimization of orbital-density-
dependent functionals. Phys. Rev. B, 91(15):155112, April 2015. doi:10.1103/PhysRevB.91.155112.

Linear-response formalism

• N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Screening in Orbital-Density-Dependent Functionals. J.
Chem. Theory Comput., 14(5):2549–2557, May 2018. doi:10.1021/acs.jctc.7b01116.

Application to molecules

• I. Dabo, A. Ferretti, C. H. Park, N. Poilvert, Y. Li, M. Cococcioni, and N. Marzari. Donor and acceptor levels
of organic photovoltaic compounds from first principles. Phys. Chem. Chem. Phys., 15(2):685–695, January
2013. doi:10.1039/c2cp43491a.

• N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. First-Principles Photoemission Spectroscopy and
Orbital Tomography in Molecules from Koopmans-Compliant Functionals. Phys. Rev. Lett., 114(16):166405,
April 2015. doi:10.1103/PhysRevLett.114.166405.

• N. L. Nguyen, G. Borghi, A. Ferretti, and N. Marzari. First-Principles Photoemission Spectroscopy of DNA
and RNA Nucleobases from Koopmans-Compliant Functionals. J. Chem. Theory Comput., 12(8):3948–3958,
August 2016. doi:10.1021/acs.jctc.6b00145.

• N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Koopmans-compliant functionals and potentials
and their application to the GW100 test set. J. Chem. Theory Comput., 15(3):1905–1914, March 2019.
doi:10.1021/acs.jctc.8b00976.

59

https://doi.org/10.1021/acs.jctc.3c00652
https://arxiv.org/abs/0901.2637
https://doi.org/10.1103/PhysRevB.82.115121
https://doi.org/10.1103/PhysRevB.90.075135
https://doi.org/10.1103/PhysRevB.91.155112
https://doi.org/10.1021/acs.jctc.7b01116
https://doi.org/10.1039/c2cp43491a
https://doi.org/10.1103/PhysRevLett.114.166405
https://doi.org/10.1021/acs.jctc.6b00145
https://doi.org/10.1021/acs.jctc.8b00976

koopmans, Release v1.0.1

Application to solids

• N. L. Nguyen, N. Colonna, A. Ferretti, and N. Marzari. Koopmans-compliant spectral functionals for extended
systems. Phys. Rev. X, 8(2):021051, May 2018. doi:10.1103/PhysRevX.8.021051.

• R. De Gennaro, N. Colonna, E. Linscott, and N. Marzari. Bloch's theorem in orbital-density-dependent func-
tionals: Band structures from Koopmans spectral functionals. Phys. Rev. B, 106(3):035106, July 2022.
doi:10.1103/PhysRevB.106.035106.

• N. Colonna, R. D. Gennaro, E. Linscott, and N. Marzari. Koopmans Spectral Functionals in Periodic Boundary
Conditions. J. Chem. Theory Comput., August 2022. doi:10.1021/acs.jctc.2c00161.

Connection with many-body formulations

• A. Ferretti, I. Dabo, M. Cococcioni, and N. Marzari. Bridging density-functional and many-body perturbation
theory: orbital-density dependence in electronic-structure functionals. Phys. Rev. B, 89(19):195134, May 2014.
doi:10.1103/PhysRevB.89.195134.

10.2 All references

60 Chapter 10. References

https://doi.org/10.1103/PhysRevX.8.021051
https://doi.org/10.1103/PhysRevB.106.035106
https://doi.org/10.1021/acs.jctc.2c00161
https://doi.org/10.1103/PhysRevB.89.195134

CHAPTER

ELEVEN

USEFUL LINKS

11.1 koopmans

• Github

• Mailing list

11.2 Quantum Espresso

• Website

• Gitlab repository

• List of keywords for pw.x

• List of keywords for cp.x

11.3 EPFL

• THEOS group home page

61

https://github.com/epfl-theos/koopmans/
https://groups.google.com/g/koopmans-users
https://www.quantum-espresso.org
https://gitlab.com/QEF/q-e
https://www.quantum-espresso.org/Doc/INPUT_PW.html
https://www.quantum-espresso.org/Doc/INPUT_CP.html
http://theossrv1.epfl.ch/

koopmans, Release v1.0.1

62 Chapter 11. Useful links

BIBLIOGRAPHY

[1] V. I. Anisimov and A. V. Kozhevnikov. Transition state method and Wannier functions. Phys. Rev. B,
72(7):075125, August 2005. doi:10.1103/PhysRevB.72.075125.

[2] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-
functional perturbation theory. Rev. Mod. Phys., 73(2):515–562, July 2001. doi:10.1103/RevModPhys.73.515.

[3] G. Borghi, A. Ferretti, N. L. Nguyen, I. Dabo, and N. Marzari. Koopmans-compliant functionals
and their performance against reference molecular data. Phys. Rev. B, 90(7):075135, August 2014.
doi:10.1103/PhysRevB.90.075135.

[4] G. Borghi, C. H. Park, N. L. Nguyen, A. Ferretti, and N. Marzari. Variational minimization of orbital-density-
dependent functionals. Phys. Rev. B, 91(15):155112, April 2015. doi:10.1103/PhysRevB.91.155112.

[5] N. Colonna, R. D. Gennaro, E. Linscott, and N. Marzari. Koopmans Spectral Functionals in Periodic Boundary
Conditions. J. Chem. Theory Comput., August 2022. doi:10.1021/acs.jctc.2c00161.

[6] N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Screening in Orbital-Density-Dependent Functionals. J.
Chem. Theory Comput., 14(5):2549–2557, May 2018. doi:10.1021/acs.jctc.7b01116.

[7] N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari. Koopmans-compliant functionals and potentials
and their application to the GW100 test set. J. Chem. Theory Comput., 15(3):1905–1914, March 2019.
doi:10.1021/acs.jctc.8b00976.

[8] I. Dabo, M. Cococcioni, and N. Marzari. Non-Koopmans Corrections in Density-functional Theory: Self-
interaction Revisited. January 2009. arXiv:0901.2637.

[9] I. Dabo, A. Ferretti, C. H. Park, N. Poilvert, Y. Li, M. Cococcioni, and N. Marzari. Donor and acceptor levels of
organic photovoltaic compounds from first principles. Phys. Chem. Chem. Phys., 15(2):685–695, January 2013.
doi:10.1039/c2cp43491a.

[10] I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni. Koopmans' condition for density-functional
theory. Phys. Rev. B, 82(11):115121, September 2010. doi:10.1103/PhysRevB.82.115121.

[11] R. De Gennaro, N. Colonna, E. Linscott, and N. Marzari. Bloch's theorem in orbital-density-dependent
functionals: Band structures from Koopmans spectral functionals. Phys. Rev. B, 106(3):035106, July 2022.
doi:10.1103/PhysRevB.106.035106.

[12] A. Ferretti, I. Dabo, M. Cococcioni, and N. Marzari. Bridging density-functional and many-body perturbation
theory: orbital-density dependence in electronic-structure functionals. Phys. Rev. B, 89(19):195134, May 2014.
doi:10.1103/PhysRevB.89.195134.

[13] D. R. Hamann. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B, 88(8):085117, August
2013. doi:10.1103/PhysRevB.88.085117.

[14] E. Kraisler and L. Kronik. Piecewise Linearity of Approximate Density Functionals Revisited: Implications for
Frontier Orbital Energies. Phys. Rev. Lett., 110(12):126403, March 2013. doi:10.1103/PhysRevLett.110.126403.

63

https://doi.org/10.1103/PhysRevB.72.075125
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevB.90.075135
https://doi.org/10.1103/PhysRevB.91.155112
https://doi.org/10.1021/acs.jctc.2c00161
https://doi.org/10.1021/acs.jctc.7b01116
https://doi.org/10.1021/acs.jctc.8b00976
https://arxiv.org/abs/0901.2637
https://doi.org/10.1039/c2cp43491a
https://doi.org/10.1103/PhysRevB.82.115121
https://doi.org/10.1103/PhysRevB.106.035106
https://doi.org/10.1103/PhysRevB.89.195134
https://doi.org/10.1103/PhysRevB.88.085117
https://doi.org/10.1103/PhysRevLett.110.126403

koopmans, Release v1.0.1

[15] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer. Excitation Gaps of Finite-Sized Systems from Op-
timally Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput., 8(5):1515–1531, May 2012.
doi:10.1021/ct2009363.

[16] K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I. E. Castelli, S. J. Clark,
A. Dal Corso, S. de Gironcoli, T. Deutsch, J. K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J. A.
Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs,
E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym,
F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Mars-
man, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert,
K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza,
P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. van Setten, V. Van Speybroeck, J. M. Wills, J. R.
Yates, G.-X. Zhang, and S. Cottenier. Reproducibility in density functional theory calculations of solids. Science,
351(6280):aad3000, March 2016. doi:10.1126/science.aad3000.

[17] C. Li, X. Zheng, N. Q. Su, and W. Yang. Localized orbital scaling correction for systematic elimination of delo-
calization error in density functional approximations. Natl. Sci. Rev., 5:203–215, 2018. URL: https://academic.
oup.com/nsr/article/5/2/203/4104965 (visited on 2020-04-04).

[18] E. B. Linscott, N. Colonna, R. De Gennaro, N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. Koop-
mans: An Open-Source Package for Accurately and Efficiently Predicting Spectral Properties with Koopmans
Functionals. J. Chem. Theory Comput., August 2023. doi:10.1021/acs.jctc.3c00652.

[19] J. Ma and L.-W. Wang. Using Wannier functions to improve solid band gap predictions in density functional
theory. Sci. Rep., 6(1):24924, April 2016. doi:10.1038/srep24924.

[20] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt. Maximally localized Wannier functions:
Theory and applications. Rev. Mod. Phys., 84(4):1419–1475, October 2012. doi:10.1103/RevModPhys.84.1419.

[21] F. Nattino, C. Dupont, N. Marzari, and O. Andreussi. Functional Extrapolations to Tame Unbound Anions
in Density-Functional Theory Calculations. J. Chem. Theory Comput., 15(11):6313–6322, November 2019.
doi:10.1021/acs.jctc.9b00552.

[22] N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, and N. Marzari. First-Principles Photoemission Spectroscopy and
Orbital Tomography in Molecules from Koopmans-Compliant Functionals. Phys. Rev. Lett., 114(16):166405,
April 2015. doi:10.1103/PhysRevLett.114.166405.

[23] N. L. Nguyen, G. Borghi, A. Ferretti, and N. Marzari. First-Principles Photoemission Spectroscopy of DNA and
RNA Nucleobases from Koopmans-Compliant Functionals. J. Chem. Theory Comput., 12(8):3948–3958, August
2016. doi:10.1021/acs.jctc.6b00145.

[24] N. L. Nguyen, N. Colonna, A. Ferretti, and N. Marzari. Koopmans-compliant spectral functionals for extended
systems. Phys. Rev. X, 8(2):021051, May 2018. doi:10.1103/PhysRevX.8.021051.

[25] M. R. Pederson, R. A. Heaton, and C. C. Lin. Local-density Hartree–Fock theory of electronic states of molecules
with self-interaction correction. J. Chem. Phys., 80(5):1972–1975, March 1984. doi:10.1063/1.446959.

[26] G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari. Precision and efficiency in solid-state pseu-
dopotential calculations. npj Comput Mater, 4(1):1–13, December 2018. doi:10.1038/s41524-018-0127-2.

[27] P. Scherpelz, M. Govoni, I. Hamada, and G. Galli. Implementation and Validation of Fully Relativistic
GW Calculations: Spin–Orbit Coupling in Molecules, Nanocrystals, and Solids. J. Chem. Theory Comput.,
12(8):3523–3544, August 2016. doi:10.1021/acs.jctc.6b00114.

[28] M. Schlipf and F. Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. Computer Physics
Communications, 196:36–44, November 2015. doi:10.1016/j.cpc.2015.05.011.

[29] Y. Schubert, N. Marzari, and E. Linscott. Testing Koopmans spectral functionals on the analytically solvable
Hooke's atom. The Journal of Chemical Physics, 158(14):144113, April 2023. doi:10.1063/5.0138610.

64 Bibliography

https://doi.org/10.1021/ct2009363
https://doi.org/10.1126/science.aad3000
https://academic.oup.com/nsr/article/5/2/203/4104965
https://academic.oup.com/nsr/article/5/2/203/4104965
https://doi.org/10.1021/acs.jctc.3c00652
https://doi.org/10.1038/srep24924
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1021/acs.jctc.9b00552
https://doi.org/10.1103/PhysRevLett.114.166405
https://doi.org/10.1021/acs.jctc.6b00145
https://doi.org/10.1103/PhysRevX.8.021051
https://doi.org/10.1063/1.446959
https://doi.org/10.1038/s41524-018-0127-2
https://doi.org/10.1021/acs.jctc.6b00114
https://doi.org/10.1016/j.cpc.2015.05.011
https://doi.org/10.1063/5.0138610

koopmans, Release v1.0.1

[30] J. H. Skone, M. Govoni, and G. Galli. Nonempirical range-separated hybrid functionals for solids and molecules.
Phys. Rev. B, 93(23):235106, June 2016. doi:10.1103/PhysRevB.93.235106.

[31] D. Wing, G. Ohad, J. B. Haber, M. R. Filip, S. E. Gant, J. B. Neaton, and L. Kronik. Band gaps of crystalline
solids from Wannier-localization–based optimal tuning of a screened range-separated hybrid functional. Proc.
Natl. Acad. Sci., 118(34):e2104556118, August 2021. doi:10.1073/pnas.2104556118.

[32] M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G. -M. Rignanese.
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Computer
Physics Communications, 226:39–54, May 2018. doi:10.1016/j.cpc.2018.01.012.

Bibliography 65

https://doi.org/10.1103/PhysRevB.93.235106
https://doi.org/10.1073/pnas.2104556118
https://doi.org/10.1016/j.cpc.2018.01.012

koopmans, Release v1.0.1

66 Bibliography

INDEX

S
SinglepointWorkflow (class in koopmans.workflows),

27

67

	About
	Quick start
	Theory
	Quasiparticle energies, piecewise linearity, and Koopmans’ theorem
	Koopmans functionals
	The motivating idea behind the functionals
	Derivation of the functionals
	Understanding the functional

	The key ingredients in a Koopmans calculation
	The variational orbitals
	The screening parameters
	ΔSCF
	DFPT
	Computational scaling for periodic systems

	The flavour: KI or KIPZ
	KI
	KIPZ

	The Koopmans workflows
	Limitations
	Issues with metals

	Related methods

	Installation
	Downloading
	Installing
	Quick installation
	Detailed installation
	Setting up a virtual environment
	Fetching the submodules
	Compiling Quantum ESPRESSO
	Adding Quantum ESPRESSO to your path
	Installing the workflow manager

	The input file
	The workflow block
	Valid keywords

	The atoms block
	The kpoints block
	The pseudopotentials block
	The calculator_parameters block
	The pw subblock
	The w90 subblock
	The pw2wannier subblock
	The kcp subblock
	The ui subblock
	Valid keywords

	The convergence block
	Valid keywords

	The plotting block
	Valid keywords

	The ml block
	Valid keywords

	How to run
	Running via python
	Parallelism
	Pseudopotentials

	Modules
	The workflow module

	Tutorials
	Tutorial 1: the ionization potential and electron affinity of ozone
	The input
	Running the calculation
	The output
	Initialization
	Calculating the screening parameters
	The final calculation

	Extracting the ionisation potential and electron affinity

	Tutorial 2: the band structure of bulk silicon (calculated via a supercell)
	Wannierization
	What are Wannier functions?
	How do I calculate Wannier functions?
	How do I know if the Wannier functions I have calculated are “good”?

	The KI calculation
	Initialization
	Calculating the screening parameters
	The final calculation and postprocessing

	Extracting the KI bandstructure and the bandgap of Si

	Tutorial 3: the band structure of ZnO (calculated with explicit k-points)
	Calculating the Koopmans band structure
	The input file
	Running the calculation
	Plotting the results

	Bonus material: understanding the Wannier projections
	Configuring the Wannierization
	Testing the Wannierization

	Tutorial 4: running convergence tests
	A simple convergence test
	The input file
	The output file
	Plotting

	A custom convergence test

	Tutorial 5: using machine learning to predict the screening parameters of water molecules
	Running a machine learning workflow
	The input file for the machine learning workflow
	The output file for the machine learning workflow

	Running a convergence analysis
	The input file for the convergence analysis
	The output file for the convergence analysis

	Support and feedback
	References
	Selected references
	All references

	Useful links
	koopmans
	Quantum Espresso
	EPFL

	Bibliography
	Index

